
AD-A281 528

WL-TR-94- 1049

DETAILED EXAMPLE OF USING PIWG
ON THE SUN WORKSTATION AND THE

DEC VAX COMPUTER

Major Steven A. Davidson
Software Concepts Group
Avionics Logistics Branch
Systems Avionics Division

December 1993

Final Report for Period 6 June 1993 to 18 June 1993

Approved for Public Release; Distribution Unlimited

94-2 1743 •2.{
DTIC QUAITYf INSPECTED 5

AVIONICS DIRECTORATE OE .lEgcT
WRIGHT LABORATORY A`F V

AIR FORCE MATERIEL COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-7409

0"7 lo3t 019

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in
connection with a definitely Government-related procurement, the United States Government
incurs no responsibility nor any obligation whatsoever. The fact that the Government may have
formulated or in any way supplied the said drawings, specifications, or other data is not to be
regarded by implication, or otherwise in any manner, construed, as licensing the holder, or any
other person or corporation; or as conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will
be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

STEVEN A. DAVIDSON, Major ROBERT L. HARRIS, Section Chief
U.S. Air Force Reserves Softwar, Concepts Group

Avionics Logistics Branch

O•4 ER KEKNER, Acting Chief
Avionics Logistics Branch
Systems Avionics Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee
is no longer employed by your organization, please notify WL/AAAF, Wright-Patterson AFB,
OH 45433-7409 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations,
contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE Fo.r 070-0o88
Ie ii o.00408

PWe.C t eort.fl, burden for this collection of information ui estmated to avee I hour Per reresore, includinig the time for reviewing instructions. learching emstng data sources.gateereng and amaitainig the data needed. a coinslt nd revenewg the col ion of information Send comments regardtig this burden estimete or any other aslpct of thiscolectian ,# informatioli•, cluding S"j rttiOet, flr reducing this burden, to Washington mleadquaerse, Services. Directorteo 1o. flformaln on Ooerations and Reports, 121S jeffersonOavis Highway. Suite 1204. Ariongton. 22202-4302. and to the office of Management and Budget. Papermorfk Reduction Project (0704.0186). W*auigoon. DC 20503.
1. AGENCY USE ONLY (LV I993 REPORT TY¶ ArI% ATI CjVER 8u

07 -IM AMDnnf1993un•. trough I 8Jun93
4. T" kTITLE S. FUNDING NUMBERSTf&tfT~ xample of Using PIWG on the SUN Workstation and PE: 63756

the DEC VAX Computer PR: 2853
_ _ _ _ _ _ _ _ __S_ _TA: 01

C. AUTHOR(S) WU: 03

DAVIDSON, STEVEN A., Major, USAF Reserves

7. PXFORMING GGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
Avioics Directorate REPORT NL .A.rR.94049Wright Laboratory
Air Force Materiel Command
Wright-Patterson AFB OH 45433-7409

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBERWright Laboratory, Avionics Directorate WL-TR-94-1049
Air Force Materiel Command
Wright-Patterson AFB OH 45433-7409

1I. SUPPLEMENTARY NOTES

Approved for Public Release;
Distribution Unlimited

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release; Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

This report is a laboratory user's guide for evaluating performance of ADA compilers using the
Association of Computing Machinery's (ACM) Performance Issues Working Group (PIWG)
benchmarking test suite. The report covers the August 1, 1990 version PIWG suite. Part I of the
report presents a detailed step-by-step instruction for installing these tests on a SUN workstationusing a UNIX operating system, and perforaming an evaluation of a SpARCAda compiler. Par 2 of
the report covers installation and execution of costs on the Wright Laboratory WL/AAAF VAX/
4000 cluster. Results include recommendations for future work: optimization for avionics,functions by identification, selection, and execution of test subsets appropriate to specific functions,
such as navigation, weapon delivery, and electronic warfare; modification of UNIX script files so
that execution is completely automatic; computation of averages and variabilities of test results; and
adding graphics to show comparisons of various Ada compilers.

14. SUBJECT TERMS 15. NUMBER OF PAGES

125Ada compilers; software performance; Ada benchmark tests; PIWG tests 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACTOF REPORT OF THIS PAGE OF ABSTRACTUNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-2B0-5500 Standard Form 298 (Rev 2-89)1. Pfescribed by ANSI Stc 239.18

TABLE OF CONTENTS

Section I - INTRODUCTION

I. Bwkground ... 12. Purpose ... 1
3. Assumptions ... i
4. Format Conventions ... 2

Section 2 - RUNNING PIWG ON A SUN WORKSTATION

I. Step I - Set up the PIWG Directory .. 3
2. Step 2 - Print the "read.me" File .. 3
3. Step 3 - Copy "compile.ver" to "verdix.sh" .. 3
4. Step 4 - Modify "verdix.sh" ... 3
5. Step 5 - Install PIWG ... 4
6. Step 6 - Select the Correct CPU_TIMEL.E CLOCK Routine .. 5
7. Step 7 - Add Other Routines to the "sup" Subdirectory ... 5
8. Step 8 - Verify Contents of Subdirectory "sup" ... 6
9. Step 9 - Executing the FIRST RUN Tests .. 6
10. Step 10 - Executing the SECOND RUN Tests ... 8
11. Step I I - Executing the THIRD RUN Tests ... 8

Section 3 - RUNNING PIWG ON THE AAAF VAX

I. Step I - Read the PIWG Files to the VAX .. 10
2. Step 2 - Create the PIWG Directory .. 10
3. Step 3 - Copy PIWG Files Into the Work Directory .. 10
4. Step 4 - Go to the PIWG Subdirectory ... 10
5. Step 5 - Modify File "compile.com" ... 10
6. Step 6 - Rename file "vaxconfi.com" .. I
7. Step 7 - Execute the PIWG Files ... I I
8. Step 8 - Modify File "zcompile.com" for SECOND RUN Tests 11
9. Step 9 - Execute the SECOND RUN Tests .. I I
10. Step 10 - Modify File "z2comp.com" for THIRD RUN Tests 12
II. Step I I - Execute the THIRD RUN Tests .. 12

Section 4 - SUMMARY

1. Observations... 13
2. Recommendations .. 13

Referenes .. 15

iii

TABLE OF CONTENTS (Cont.)

APPENDICES

Appendix A - "READ.ME" File 16
Appendix B - "VERDIX.SH" ... 24
Appendix C - PIWG (First) Execution Tests Result Using SPARCAda on the SUN

W orkstation ... 40
Appendix D - Script File for "SECOND RUN" PIWG Tests on the SUN Workstation 55
Appendix E - PIWG "SECOND RUN" Results Using SPARCAda on the SUN

W orkstation ... 57
Appendix F - Script File for "THIRD RUN" PIWG Tests on the SUN Workstation 59
Appendix G - PIWG "THIRD RUN" Results Using SPARCAda on the SUN

W orkstation ... 63
Appendix H - "COMPILE.COM" File .. 65
Appendix I - PIWG (FIRST) Execution Test Results Using DEC Ada on the VAX

Com puter .. 69
Appendix J - Command File for "SECOND RUN" PIWG Tests on the VAX

Com puter ... 103
Appendix K - PIWG "SECOND RUN" Results Using DEC Ada on the VAX

Com puter .. 106
Appendix L - Command File for "THIRD RUN" PIWG Tests on the VAX

Com puter ... M
Appendix M - PIWG "THIRD RUN" Results Using DEC Ada on the VAX

C om puter .. 1 15

iv

FOREWORD

This technical report was prepared by Major Steven A. Davidson, USAF Reserves, as part
of his 2-week active-duty tour at Wright Laboratory, Avionics Directorate, System Avionics
Division, Avionics Logistics Branch (WL/AAAF), Wright-Patterson AFB, OH during the period
7-18 June 1993.

This report documents using the August 1, 1990 version of the PIWG benchmark test suite
on a SUN Workstation and the WL/AAAF VAX/4000 cluster. The intent of this report is to
provide an easier access to PIWG benchmark test suite for researchers within the Government by
providing a "hands-on" experience guide.

The work was accomplished under the Aeronautical Systems Center Air Force Reserves
Project 93-451 -LAB.

hoooauion lop
IS GRA&I If

DTIC TAB 0
Unannounced 0
Justificaio-

By
Distribution/,e
Availability Codoes

Avail and/or

Dist Speale

vd~

Section I
INTRODUCTION

I. Baekgr.md.

In November 1984, the Association of Computing Machinery (ACM) Special Interest Group on
Ada (SIGAda) Performance Issues Working Group (PIWG) was formed. PIWG's charter is to
provide performance related information on Ada compilers to the Ada community.
Accordingly, a PIWG team of volunteers created a suite of Ada benchmark test programs in
1985 to serve as a performance measurement tool. Since that time, a new version of the PIWG
suite has been produced every year by improving measurement techniques and by adding new
test programs. The PIWG suite is freely available and is widely distributed. It has, therefore,
become a performance measurement standard in the Ada community. [I

2. Purpoe.

The purpose of this paper is to provide an explicit, step-by-step worked-example of how to
install and execute the August 1, 1990 version of the PIWG suite. Section 2 describes how to do
this on a SUN Workstation running under the UNIX operating system using the new SPARCAda
compiler. Section 3 covers installation and execution of the PIWG suite on a Digital Equipment
Corporation (DEC) VAX main frame computer.

3. Asumptions.

This paper makes the following assumptions:

a. PIWG Suite. The August 1, 1990 versions of the PIWG suite of benchmark test
programs, associated script files, .COM files, and "readme" file are used in this report.

b. UNIX Commands. The reader is not required to know the UNIX command language
used on the SUN Workstation. Information to perform essential tasks to execute PIWG on the
SUN Workstation is provided in Section 2.

c. DEC Command Language (DCL). The reader is not required to know the DCL used on
the VAX computer. Information to perform essential tasks to execute PIWG on the VAX
computer is provided in Section 3.

d. Ada Compilation System (acs). The .COM files from the PIWG distribution tape or
bulletin board are written such that the Ada compiler, linker, and library are invoked by means
of the VAX DCL utility "acs". This utility software must be available on the VAX machine
being used to compile the PIWG suite.

e. Text File Editors. The reader is expected to be able to use a text editor to modify script
files on the SUN Workstation and command files (.COM) on the VAX computer. For the VAX
computer, screen editors such as EDT or the Language Sensitive Editor (LSE) are
recommended.

4. Format Comventions.

This paper will use the following format conventions to promote clarity and minimize confusion:

a. Interactive Commands. Commands that are to be entered on the SUN Workstation or on
a VAX terminal are indented and set apart from the supporting text by blank lines. Each
command appears on a separate line. The end of the line implies the carriage return (RETURN)
key is to be pressed.

b. File Names. File names and directory names discussed in the test will be enclosed within
double-quote marks (example: "read.me").

c. Comments. In Section 2, comments associated with inputs required for script files will
be preceded by two hyphens (-), per the Ada convention. Do not enter the hyphens or any text
that follows on the same line.

2

Section 2
RUNNING PIWG ON A SUN WORKSTATION-

1. Step 1 - Set up the PIWG Directory

A separate subdirectory should be created on the SUN Workstation to contain the PIWG files.
The subdirectory should be created in a partition that has sufficient memory for the PIWG
source files and files created as a result of compiling and executing the PIWG files. For the
SUN Workstation that produced the PIWG results discussed in this report, the PIWG source files
were read into the subdirectory:

/home/corbeaux/davidson/8_ 190piwg

The PIWG source files were initially in a single compressed file, "8_l_90piwg.tar.z". This file
was uncompressed using the UNIX command:

uncompress 8_l_90piwg.tar.z

This produced the uncompressed file, "8jl_90piwg.tar". The separate PIWG files were
extracted using the UNIX command:

tar -xvf 8_1j90piwg.tar

As a result, numerous PIWG files were produced in the subdirectory
"/home/corbeaux/davidson/8._l90piwg", with the majority having the file extension of ".ada".

2. Step 2 - Print the "read.me" File.

The file "read.me" should be one of the files now available after completing Step 1. Print this
file and read it carefully. It gives guidance on executing the PIWG benchmark tests. A copy of
the "read.me" file is in Appendix A. The steps that follow refer to the text of this file.

3. Step 3 - Copy "compile.ver" to "verdh.sh"

Copy file "compile.ver" into a new file, "verdix.sh", using the UNIX command:

cp compile.ver verdix.sh

4. Step 4 - Modify "verdix.sh

Files "compile.ver" and "verdix.sh" contain the Bourne shell script for building and executing
PIWG files under UNIX. However, they also contains explanatory text at the

3

beginning and near the end of the file that must be removed before the file can be executed as a
shell script. Use a text file editor to remove all lines of file "verdix.sh" prior to the first line of
the shell script:

#! /bin/sh

Remove all lines after the last lines of the shell script:

done
cd $cur.wd

done

Save the modified file as file "verdix.sh". A copy of file "verdix.sh" is in Appendix B.

S. Step 5 - Install PIWG

Install PIWG on the SUN Workstation using the "verdix.sh" script file. First, check you are
located in the proper directory by using the UNIX command:

pwd

The response, "/home/corbeaux/davidson/8-l_90piwg" should appear on the screen. Also check
the "verdix.sh" file is in this subdirectory by using the UNIX command:

Is verdix.sh

The response should echo back the file name, "verdix.sh". Make appropriate corrections as
necessary (or get help) before proceeding. Start execution of the script file by entering the
UNIX command:

sh verdix.sh

After execution begins, the shell will ask for a series of inputs. Respond as follows for initial
installation:

I - to select Install PIWG
/home/corbeaux/davidson/8_l_90piwg

- to enter path for desired Verdix PIWG location
I - for System V timing procedure
I - select Self-Target

The "verdix.sh" shell will create new subdirectories for each of the various test groups that are
described under the heading, "FIRST OF EXECUTION TESTS" in file "read.me" (see
Appendix A). These subdirectories are "a", "b", "c", "d", "e", "f", "g", "h", "I", "p", "t", and "y".
The shell will also create the subdirectory "sup" for the basic routines in the program library for

4

execution timing tests. The shell will additionally create subdirectories "z" and "zother" for the
"SECOND RUN" and "THIRD RUN" tests, respectively, described in the "read.me" file. These
are discussed later in Paragraphs 10 and I I in Section 2 of this report.

The shell will rename all Ada files with an ".a" extension (instead of the original ".ada"
extension) and copy them into their appropriate subdirectory.

6. Step 6 - Select the Correct CPUTIMECLOCK Routine

During the installation, "verdix.sh" will write "a000019.a" to subdirectory "sup" if Systern.V is
selected or "a000018.a" if VAX/UNIX or SUN3 UNIX is selected. No other options are
available. Neither "a000018.a" nor "a000019.a" allow test "y000002.a" to execute correctly
when run interactively. Test "y000002.a" is a check for CPU_TIME_CLOCK. As the
"read.me" file indicates, "aOO0017a.a" is the correct routine to use with the Verdix Ada. Until
the "compile.ver" file (and the resulting "verdix.sh" shell) is corrected, the user must copy the
correct routine for CPUTIMECLOCK into subdirectory "sup" by doing the following:

Starting in subdirectory "/home/corbeaux/davidson/8_l_90piwg", copy "a000017a.ada" into the
"sup" subdirectory and rename it as "aOOOO7a.a" by using the UNIX command:

cp a000017a.ada Jsup/a000017a.a

Go to the "sup" subdirectory:

cd sup

Remove file "a000019.a" that was written to subdirectory "sup" by the "verdix.sh" shell:

rm a000019.a

Verify that "a000017a.a" replaced file "a000019.a" by listing the files in subdirectory "sup":

Is

Return to the next higher subdirectory, "/home/corbeaux/davidson/8_l_90piwg" for proper
execution of the remaining steps:

7. Step 7 - Add Other Routines to the "sup" Subdirectory

There are three other basic routines that MUST be added to the "sup" subdirectory for proper test
execution. The "compile.ver" file should be corrected so this will be done automatically during
installation. Until the "compile.ver" file (and the resulting "verdix.sh" shell) is corrected, the
user must copy and rename the these files manually by entering the following UNIX commands
(while in subdirectory /home/corbeaux/davidson/8_l_90piwg):

cp aOO0047.ada Jsup/a000047.a

5

cp a000048.ada ./sup/a00048.a

cp a00005 l.ada /sup/aOO005 l.a

8. Step 8 - Verify Contents of Subdirectory "sup"

Subdirectory "/home/corbeaux/davidson/8_l_90piwg/sup" should contain the following files as
a result of completing Steps 5 through 7:

GVAS-table
aOOOOO.a
a000017a.a
a00002 L.a
a000022.a
a000031.a
a000032.a
a000041.a
a000042.a
a000047.a
a000048.a
a000051.a
ada.lib
gnrx.lib

Although some additional files may be present (such as "ada.lib%", etc.), it is important that the
files "aO0001 l.a" through "a000019.a" are NOT in subdirectory "sup", except for file
"aOOOOI7a.a". Refer to Paragraph 1 of the "read.me" file (Appendix A), and the comments that
accompany the listing of files in Paragraph 3 of the "read.me" file.

9. Step 9 - Executing the FIRST RUN Tests

Execute the PIWG files for the FIRST RUN as described in the "read.me" file by using the
"verdix.sh" script file. First, check you are located in the proper directory by using the UNIX •
command:

pwd

The response, "/home/corbeaux/davidson/8_l_90piwg" should appear on the screen. Also check
the "verdix.sh" file is in this subdirectory by using the UNIX command:

Is verdix.sh

The response should echo back the file name, "verdix.sh". Make appropriate corrections as
necessary (or get help) before proceeding. Start execution of the script file by entering the
UNIX command.

sh verdix.sh

6

After execuxion begins, the shell will ask for a series of inputs. Respond as follows:

3 - to run PIWG
/home/corbeaux/davidson/8_ 90piwg

- to enter path for desired Verdix PIWG location
y - to run test WITHOUT suppressed checking
n - to say "no", support library is not compiled
<CR> - choose the default for output to screen
2 - choose tests by letter (test group letter)
a -- choose the "a" tests (only)
<CR> - (blank line signals no more tests follow)

The "verdix.sh" shell will immediately begin compiling, linking, and executing the tests
selected. In this case, the test routines in Group "a", as described in the "read.me" file will be
executed. For the first execution and after ANY changes to the files in subdirectory
"heme/corbeaux/davidson/8_l_90piwg/sup", ALWAYS respond with "n" for "no" when asked if
the support library is compiled. If you have any doubts, choose "n" in response to this question.
If the library was previously compiled and "n" is selected, a lot of warning messages ("id hides•
outer definition") will be generated. This will not adversely affect execution of PIWG.
However, if ANY changes are made to the files in subdirectory
"/home/corbeaux/davidson/"8_1_90piwg/sup" and the support library is NOT compiled by
selecting "y" for "yes", results are unpredictable and errors are likely to occur.

Output to the screen is selected because this allows one to verify that the P1WG tests are
executing. However, it is also possible to get a hard copy of these results on paper for off-line
review and analysis. With the SUN Workstation, the screen output is stored in an output buffer
file. Using the mouse, one can scroll back to the beginning of the screen output and, using block
marking procedures, copy the PIWG output portion from the screen buffer file to a separate user
file for subsequent printing. For details on how to do this, get help from someone experienced
with using the SUN Workstation.

When the "a" test group is executed, the last test in the group, Routine "a000095.a", expects to
read the output from a script file as an input file to produce a compressed file of results. I could
not get this to work but entering a carriage return causes an error, the program is abandoned, and
execution stops. (Routine "a000095" is not addressed in the "read.me" file; its purpose is
unknown.)

To run all tests of the PIWG, initiate execution of the script file again by entering the UNIX
command:

sh verdix.sh

After execution begins, the shell will ask for a series of inputs. Respond in a similar manner as
described for the previous example except choose "all tests" instead of "tests by letter". A copy
of the results of choosing all tests is in Appendix C.

7

10. Step I0 - Executing the SECOND RUN Tests

Execute the PIWG files for the SECOND RUN as described in the "read.me" file by using the
"second" script file that was created during the installation of PIWG (Step 5 of this Section).
Appendix D contains a copy of this script file. Move to the
"/home/corbeaux/davidson/8__L90piwg/z" subdirectory from the
"/home/corbeaux/davidson/8_l_90piwg" subdirectory by using the UNiX command:

cdz

Initiate execution of the script file by entering the UNIX command:

sh second

Results from the SECOND RUN are provided in Appendix V. As the results state, the
difference between the start and stop wall times is the bench mark value of interest. Appendix V
shows this bench mark value for the SUN Workstation running "SPARCAda" is (62140 - 61811
-) 329 seconds.

11. Step I I - Executing the THIRD RUN Tests

Execute the PIWG files for the THIRD RUN as described in the "read.me" file by using the
"third" script file that was created during installation of PIWG (Step 5 of this Section).
Appendix VI contains a copy of this script file. Move up to the
"/home/corbeaux/davidson/8_l_90piwg" subdirectory from the
"/home/corbeaux/davidson/8_l_90piwg/z" subdirectory by using the UNIX command:

cd..

Move down to the "/home/corbeaux/davidson/8_l_90piwg/zother"subdirectory by using the
UNIX command:

cd zother

Initiate execution of the script file by entering the UNIX command:

sh third

l

Results from the THIRD RUN are provided in Appendix VII. As the results state, the difference
between the start and stop wall times are the bench mark values of interest. Appendix VII shows
these bench mark values for the SUN Workstation running "SPARCAda" are:

compiling files Stop Wall Time 37681 seconds
separately Start Wall Time 37159 seconds

Total Time 522 seconds

compiling files at Stop Wall Time 38496 seconds
once in z000200.a Start Wall Time 37681 seconds

Total Time 815 seconds

9

Section 3

RUNNING PIWG ON THE AAAF VAX

I. Step I - Read the PIWG Files to the VAX

Read the August 1, 1990 version of the PIWG files into a public directory that has read-only
protection. Ask your VAX System Manager to create a public directory and read the PIWG files
into it. The PIWG files were read into public directory lDIAI :[PIWG] on the AAAF VAX.

2. Step 2 - Create the PIWG Directory

A separate subdirectory should be created in the user's area to contain the PIWG files. The
remaining steps in this paper for executing the PIWG files are based on the following directory
and subdirectory structure. The top directory is [davidson] on Disk 9 (SDIA9:). Of course,
the reader's VAX account name would be substituted for "davidson" in all the commands
presented in this paper. The work subdirectory is set up by entering the VAX command:

create/dir [davidson.piwg]

Subdirectory [davidson.piwg] is the PIWG working directory. This is where all PIWG files are
modified and executed.

3. Step 3 - Copy PIWG Files Into the Work Directory

Copy the PIWG files into your directory by entering the VAX command:

copy $1 $dial :[piwgj*.* $ $dia9:[davidson.piwg]*.*

The above command is based on the public directory being located on Disk 1 (1DIAI).

4. Step 4 - Go to the PIWG Subdirectory

Move to the PIWG subdirectory before performing the remaining steps. Enter the VAX
Command:

set def [davidson.piwg]

5. Step 5 - Modify File "compile.com"

Using an ASCII text file editor, change the sixth line of this file from:

$ SET DEF 1DIAI:[PIWG]

to:

$ SET DEF IDIA9j[DAVIDSON.PIWG]

10

6. Step 6 - Resume file "vatcenfl.€om"

Change the name of this file to agree with the file name specified in the tenth line of the
"compile.com" file:

S @ VAXCONFIG

Enter the VAX Command:

rename vaxconfi.com vaxconfig.com

(Alternately, the tenth line of the "compile.com" file could be modified to agree with the file
name "vaxconfi.com".)

7. Step 7 - Execute the PIWG Files

Submit file "compile.com" as a batch job to prevent the terminal from being unusable during the
rather long execution time (about 20 minutes) and to have the output written to a file,
"piwg.log". Appendix VIII is a copy of the "compile.com" file after the appropriate
modification were made. Enter the following VAX command:

submit/notify/log~file-[davidson.piwg]piwg.log compile.com

Print the resulting file "piwg.log" and review it. A copy of the PIWG results on the VAX is in
Appendix A.

&. Step 8- Modify File "zcompile.com" for SECOND RUN Tests

File "zcompile.com" is provided on the distribution tape and can be used to execute the
SECOND RUN tests (described in the "read.me" file) on the VAX computer. Prior to using this
command file, the "S SET DEF" line must be modified, as was done in Step 5 for the
"compile.com" file. Change the third line from:

$ SET DEF IDIAI:[PIWG]

to:

S SET DEF IDIA9:[DAVIDSON.PIWG]

9. Step 9 - Execute the SECOND RUN Tests

Submit file "zcompile.com" as a batch job to have the output written to a file, "run2.log".
Appendix X is a copy of the "zcompile.com" file after the modification in Step 8 was completed.
Enter the following VAX command:

11

submit/noify/log_file,,[davidson.piwgjrun2.log zcompile.com

Print the resulting file "run2.log" and review it. A copy of.
the SECOND RUN results on the VAX is in Appendix XI.

10. Step 10- Modify File "z2comp.com" for THIRD RUN Tests

File "z2comp.com" is provided on the distribution tape and can be used to execute the THIRD
RUN tests (described in the "readme" file) on the VAX computer. Prior to using this command
file, the "S SET DEF" line must be modified, as was done in Step 5 for the "compile.com" file.
Change the third line from:

$ SET DEF $ISDIAI:[PIWG]

to:

$ SET DEF S ISDIA9:[DAVIDSON.PIWG]

11. Step 11- Execute the THIRD RUN Tests

Submit file "z2comp.com" as a batch job to have the output written to a file, "run3.1log".
Appendix XIi is a copy of the "z2comp.com" file after the modification in Step 8 was
completed. Enter the following VAX command:

submit/notify/Iog.ile"[davidson.piwg]run3.log z2comp.com

Print the resulting file "run3.1log" and review it. A copy of the THIRD RUN results on the VAX
is in Appendix XIII.

12

Section 4
SUMMARY

1. Observatloms

The PIWG command files for the DEC VAX computer are very easy to use. They only require
a simple change to specify the appropriate directory in the user's account. The one error I found
concerning "vaxconfig.com" file (see Section 3, Step 6) is non-fatal but should be corrected so
that test results will always include useful information about the VAX machine and version of
DEC Ada being used.

The PIWG UNIX script files for the SUN Workstation (or other UNIX-based computers) need
inprovement. The user must manually perform many file manipulations prior to running the
script file to obtain useful results.

A brief comparison of the PIWG (FIRST) Execution Tests between the VAX and the SUN
Workstation shows that many more test results are available for the VAX version of PI WG
(printed on 41 pages in Appendix A) than for the SUN version (printed on 16 pages in Appendix
C). A comparison of CPU times for the PIWG tests performed by both machines shows the
SUN Workstation is much faster than the VAX...more than 9 times faster for some tests!

The SECOND RUN test is a compile time benchmark. As the script file comments state, it is
meaningful only when run with no other tasks on the machine. Consequently, the result of 329
seconds for the SUN Workstation (see Section 2, Step 10) is meaningful but the value of 966
seconds (42445 - 41479) for the VAX (see Appendix XI) is not reliable because the VAX was
always operating as a time-share machine with multiple users when the PIWG tests were done.
The SECOND RUN results for the VAX are provided only to show the format of the results.

This same observation applies to the THIRD RUN tests. However, Section 2, Step 11, shows
that it is ser for the SUN Workstation to compile programs in separate files (522 seconds)
than to compile the same number of programs lumped together in a single file (815 seconds).

2. Recommendations

This paper can serve as a starting point for additional projects. Some examples are as follows:

a. Determine which PIWG tests are most important for Air Force avionic applications.
PIWG avionic tests should be further subdivided into navigation, flight control, weapon
delivery, or electronic countermeasure tests, for example. Write modified UNIX script files or
VAX command files that execute a subset of PIWG tests for a specific application. These
modified script files could help the user focus a PIWG evaluation on problems most important to
the Air Force.

b. Improve the UNIX script files so that execution is completely automatic; no manual file
manipulations are necessary.

13

c. Perform multiple PIWG runs on a single machine and compute averages and variations
of tests results.

d. Perform PIWG runs on different machines and do a detailed comparison of the test
results between the machines. Show these differences graphically on charts.

14

References

1. *A Rationale for the Design and Implementation of Ada Benchmark Programs," Ada Let
S(Association for Computing Machinery, Inc., 11 West 42nd Street, New York,

N.Y. 10036), Volume X, Number 3, Winter 1990.

13

APPENDIX A

""~RAD.M" FUj.E

16

APPENDIX A
READ.ME FILE

READ.ME

There are three complete rumn to be made on each computer/compiler combination. The first run
makes execution performance mea-uemnts on Ada features and composite benchmarks. The
second run makes a composite compile speed measurement including linking and execution.
The third run compiles about 100 files from the SIGAda programming contest winner, then
compiles the same source code again as one file.

For your convenience, scripts are provided for several computer/compiler combinations. The
scripts are needed because there are multiple bodies for some of the Ada package specifications.

DO NOT USE A" MAKE" ON THE ENTIRE DIRECTORY :!
DO NOT USE" SUPPRESS "except where indicated !!!

A sample output from all three runs is shown in SAMPLE.OUT. Sample log files are shown as*.LO7

FIRST RUN

The first run is typified by COMPILE.COM (VAX), COMPILE.CLI (ROLM/Data General) or
COMPILE.BAT (PC compatibles).

COMPILE.VER (Verdix on UNIX). If necessary, build a script from one of these for your
computer/compiler. The script is intended to compile a selection of the Ada source, link them
into one or more executable programs, and then execute the tests and print a reort. Please send
PIWG the minimum repeatable execution times. Execute tests individually if times differ
significantly from executing the combined tests. In order for tests to fit on some embedded
computers, every test must be linked and downloaded separately. AEMBEDDED.COM along
with LINKD.COM is a sample script for preparing absolute images for down loading. (These
must be tailored for each host/compiler/target). For embedded computers, executions must be
on real hardware. These measurements are not suitable for simulators. COPY.RAT may help
selecting the files for the Rational R1000.

If running on a PC, get rid of the .COM files. They will cause the PC to hang if you try to use a
.BAT file of the same name. Various .BAT files are provided to compile, link and execute each
test individually.

Generally, compilation order is alphabetical, but DO NOT COMPILE EVERYTHING. There
are a number of choices to be made depending on the computer/compiler being used.

The test suite is designed for running with the predefined type INTEGER being 32 bits. The
Uniformity Rapporteur Group, URG, Uniformity Issue, UI-0008, states in part that an
implementation should have a mode of operation in which INTEGER'LAST >- 2**31-i. Most
tests will work with 16 bits for type INTEGER. Only a few tests will fail, turn in results even if
some tests fail. A few tests are quite large. Turn in results even if these large tests do not
compile or execute.

Most tests do not include TEXTJO. In an embedded computer that, for some reason, can not
handle TEXTJO, do not run the "G" tests. Remove "with TEXTJO" and calls on PUT. Try
something to be sure the code to be measured is not optimized away. This applies to tests:

17

APPENDIX A
READ.ME FILE

A000M0, A000091, A000092, A000093, BOOOO10, YOOOOO1.

I. Choose one of AO00001 through A000019 for CPU_TIME-CLOCK. This is
computer/operating system dependent. AOOOOI gets only WALL time via the package
CALENDAR. We hope all compilers can do better than this. A tailored version that gives
better accuracy is allowed. Please send an electronic copy in with your results.

2. Choose one of A000042 through A000044 for PIWG._O body. A000042 produces printout
as it runs (only one sample per run). Please direct the printout to disk and send in an
electronic copy, that have no TEXTJO. (Some editing will be required.)

3. Choose from making each procedure A000090 through Y000003 a main program, or using
A000100 as a single main program with A000042, or using A000101 and A000102 as a pair of
smaller main programs, or using a script like AEMBEDDED.COM, or COMPILE.BAT with
each teat as an individual main program.

The first group of files below establishes the basic routines in the program library for the
execution timing tests. The complete test suite can be compiled, linked and run from one
library. All files are of the form NAME.TYP with TYP being ADA for all Ada source
files.

ADA A000001 DURATIONIO instantiation

ADA AOOOO II CPUJTIMECLOCK.ADA PICK ONE from this set or do your own
ADA A000012 CPUJTIMECLOCK.VAX
ADA A000013 CPUTIMECLOCK.DG (manufacturers should help)
ADA A000014 CPUTIMECLOCK.UNIX worked on Gould HZ - 60
ADA A000014A CPUJTIME-CLOCK.UNIX UNIX with HZ - 100
ADA A000015 CPU_TIMECLOCK.R1000
ADA A000016 CPUTIMECLOCK.ULTRIX
ADA A000017 CPUTIMECLOCK.UNIX worked on SUN
ADA AOOOOI7A CPUTIMECLOCK.UNIX Verdix
ADA A000018 CPUTIME-CLOCK.Meridian
ADA AOOOO 19 CPUTIMECLOCK.RR Janus
ADA A00002 1 BREAK optimization control package spec
ADA A000022 BREAK optimization control package body
ADA A000031 ITERATION Iteration control package spec
ADA A000032 ITERATION Iteration control package body
ADA A000041 PIWG_1O output package spec (universal)

PICK ONE from group below:

ADA A000042 PIWGIO package body for screen/printer output
ADA A000044 PIWGOJ package body for save in memory, no

TEXT-1O
ADA A000047 PIWGTIMER..GENERIC spec
ADA A000048 PIWGTIMERGENERIC body

THE A000051 ..A000055 ARE FOR THE HOST ONLY! Do not compile these for an
embedded execution target.

ADA A000051 A000051 executable procedure to print WALL and

1s

APPENDIX A
README FILE

CPU time (only for HOST, not embedded
target)

ADA A000052 A000052 A set of 4 executable procedures that
ADA A000053 A000053 can be used to measure CPU and Wall time
ADA A000054 A000054 without instrumenting the run begin
ADA A000055 A000055 measured. Place optional control between

A000052 and A000053. Place test being
measured between A000054 and A000055.

ADA A000095 A000095 A program to read a log file from
COMPILE.* and produce a compact listing
PIWGTBL.

ADA A000098 This is a skeleton procedure that can be
copied and edited to construct more tests
that have multiple parts or multiple copies
of the same test. DO NOT COMPILE
THIS. It is for editing to make more tests.

ADA A000099 This is a skeleton procedure that can be
copied and edited to construct more tests.
DO NOT COMPILE THIS. It is for
editing to make more tests.

ADA AOOO 100 A000100 This is a top level procedure that calls all the
other executable timing tests. It is useful if
there is a "MAKE" facility available. (This
may be too big to execute on many
computers. Tests may be run individually
or this may be split into smaller sets.)

ADA AOOO101 This and A000102 are A000100 split in two
pieces. It includes tests A000090 .. 000004.

ADA A000102 This and AOOO101 are A000100 split in two
pieces. It includes tests EOOOOO .. 000001.
Split up groups of tests as necessary to get
them run.

FIRST OF EXECUTION TESTS

ADA A000090 Measure clock resolution by second
differences

ADA A000091 DHRYSTONE
ADA A000092 WHETSTONE using manufacturers math

routines (must edit)
ADA A000093 WHETSTONE using standard Ada math

routines
ADA A000094A..K HENNESY benchmarks

This group of tests measures a tracker algorithm.

19

APPENDIX A
READ.ME FILE

ADA BOOOOOIA
ADA 1000001B Use pragma SUPPRESS or NOCHECK or

other switch
ADA B000002A
ADA B000002B Use pragma SUPPRESS or NOCHECK or

other switch
ADA B000003A
ADA B000003B Use pragma SUPPRESS or NOCHECK or

other switch
ADA B000004A
ADA B000004B Use pragma SUPPRESS or NOCHECK or

other switch
ADA B000010
ADA B000011
ADA B000013

This group of tests measures task creation related timing.

ADA C000001
ADA C000002
ADA C000003

This group of tests measures dynamic elaboration related timing.

ADA D000001
ADA D000002 These may not run on some targets. DO

NOT CHANGE THEM
ADA D000003
ADA D000004

This group of tests measures exception related timing.

ADA E000001
ADA E000002
ADA E000003
ADA E000004
ADA E000005

This group of tests measures coding style related timing.

ADA F00000 I
ADA F000002

This group of tests measures TEXTJO related timing.

ADA G000001
ADA G000002 SOME MAY NOT RUN ON SOME

TARGETS.
ADA G000003
ADA G000004
ADA G000005
ADA G000006
ADA G000007

20

APPENDIX A
READ-ME FILE

This group of tests measures chapter 13 related features.

ADA HOOOOO I
ADA H000002
ADA H000003
ADA H000004
ADA H000005
ADA H000006
ADA H000007
ADA H000008
ADA H000009

This group of tests measures loop overhead related timing.

ADA LOOOOO I
ADA L000002
ADA L000003
ADA L000004
ADA L000005

This group of tests measures procedure call related timing.

ADA P000001
ADA P000002
ADA P000003
ADA P000004
ADA P000005
ADA P000006
ADA P000007
ADA P0000 10
ADA P00001 I
ADA P0000 12
ADA P000013

This group of tests measures task related timing.

ADA T00000 I
ADA T000002

41 ADA T000003
ADA T000004
ADA T000005
ADA T000006
ADA T000007 This is a check on TOOOOO 1 that only works

on some machines
ADA T000008

This group of tests measures delay related timing.

ADA YOOOOOI This takes several minutes to run
ADA Y000002 Run interactively to check

CPUTIMECLOCK

21

APPENDIX A
READ.ME FILE

ADA Y000003 run interactively to check
CALENDAR.CLOCK

The file COMPILE.COM is a sample script that compiles and runs the above tests when the host
computer is also the target. Commercial computers, software engineering workstations

The file COMPILE.CLI is a sample script for Data General MV series for above.

The file COMPILE.VER is a sample script for Verdix compiler on Unix.

The file COMPILE.BAT is a sample script for a PC. It has associated files COMP.BAT and
RUN.BAT that may need modification. COMPLMER.BAT is tailored for Meridian on a PC

The file AEMBEDDED.COM is a sample script that compiles the above tests for later execution
on an embedded computer.

SECOND RUN

This is a composite compile time measurement.

The second run is typified by ZCOMPILE.COM (VAX) or ZCOMPILE.CLI (ROLM/Data
General) or ZCOMPILE.BAT (PC compatibles). Build the necessary script from one of these
for your computer/compiler. This script provides one compilation time measurement for the time
to compile, link and execute two programs. The execution time is very small compared to
compile time. The "execution" for this run can be performed on a simulator (the simulation time
is not counted as part of the total time)

The "Z" tests are for measuring compilation time using A00005 1. A000052 .. A000055 do a
calibration and differencing. The execution part of this test may be omitted, but use it for
checking to see that executable code was produced and that it will execute properly.

The files, ZOOOOO I through Z000023 are all part of one test, see sample script
ZCOMPILE.COM. See ZCOMPILE.CLI, ZCOMPILE.BAT for other sample scripts.
ZCOMPILE.LOG is a sample output.

Compile these files as given. Do not combine in one big file. We have data on these
compilations from 1984. We want to be able to plot a five year industry trend. DON'T
CHANGE THE TESTS.

RUN A00005 i
RUN A00005 1 ! calibrate time to measure time
RUN A000051
ADA Z000001 ! FLTIO
ADA Z000002 ! REFUNCT
ADA Z000003 ! PREAL
ADA Z000004 ! PUBASIC
ADA Z000005 ! PUMECH
ADA Z000006 ! PUELEC
ADA Z000007 ! PUOTHER
ADA Z000008 ! MKSPMECH
ADA Z000009 ! MKSPELEC
ADA Z000010 ! PCONSTANT

22

APPENDIX A
README FILE

ADA ZOOOOI I I PUOBASIC
ADA Z000012 I PUOMECH
ADA Z000013 ! PUOELEC
ADA Z000014 I PCCONST
ADA ZOOOOIS ! PUCONV
ADA Z000016 I PUCMKS spec
ADA Z000016A I PUCMKS body (rather large)
ADA Z000017 ! PUCENGL spec
ADA Z000017A I PUCENGL body (rather large)
ADA Z000018 ! PHYSICSI
LINK Z000018 ! the linking time is part of the test time
RUN Z000018 I very short just check to be sure it really runs

!the timing othis is not counted for an embedded computers
i it shouldbe run just to be sure it was really compiled

ADA Z000020 i GENPREAL
ADA Z000021 ! ALLSTMT
ADA Z000022 ! GENSORTSH
ADA Z000023 ! GENSHELLI
LINK Z000023 ! the linking time is part of the test time
RUN Z000023 t very short, just check to be sure it really runs

! the timing of this is not counted for an embedded computers
! it should be run just to be sure it was really compiled

RUN A000051 I final time measurement
! when this test can be run with no other tasks running, it

! represents a composite software development benchmark

THIRD RUN

This is a comparison of compilation speed using each compilation unit in its own file vs. all
compilation units in one large file. The files are from the winner of the SIGAda programming
contest. This may represent a sample of a small real time program. The programming style
may be considered OOP. There is heavy usage of "is separate".

RUN A000051 ! initial wall time
ADA ZOOO1OO
ADA ZOOOIOI

102 files including 106A and 106BADA O19
RUN A000051 I final wall time, compute difference and report
RUN A000051 ! initial wall time
ADA Z000200 ! this includes all files ZOOO100 .. Z000199
RUN A000051 ! final wall time, compute difference and report

PLEASE use common sense in analyzing results.

23

APPENDIX B

"VERDIX.SH" FILE

24

APPENDIX B
"VEDIX.SI. FILE

#1/bin/sh
verdix.run - Bourne shell script for building and executing PIWGs under UNIX.
nIten,

contains-'echo "Contains \c" I step "c
case Scontains in

"*") a-"";;
*) c"';;

emc
TRUE-I
echo "This is the Verdix PIWG execution shell file. This file will do the following: Copy the"
echo "tests into separate sub-directories, with the .a suffix. Select and compile the appropriate"
echo "A files for subsequent test execution. Allow you to select the host-target combination"
echo "that you wish to test. Allow you to run selected tests, or the entire suite."
echo "
while [$TRUE]

do
echo "Which operation do you wish to perform:"
echo "I) Install PIWG's for Verdix execution"
echo "(This will need to copy all test files to a new location)"
echo "2) Modify tests to use Verdix-Specific Pragmas"
echo "3) Run PIWG's"
echo ""

echo $n "Enter choice: $c"
read option
case $option in

[1-3]) break;;
*) echo "valid choices are 1, 2, and 3"; echo "";;

esac
done

echo "Enter Path to Desired Verdix PIWG Location"
echo Sn "path : Sc"
read pbd
foo-'echo Spbd I wc -w"
if [Sfoo - 0]

then
pbd-'.'

elif [! -d Spbd]
then

mkdir $pbd
fi
cur.wd-'pwd
if [$option - I]

then

25

APPENDIX B
"VERDIX.SH" FILE

echo"
echo "You now need to select the host-target combination that you will use. This
echo "selection will determine the timing support routine selected. If you are going to"
echo "run on a cro-target, you will need to perform rather substantial installation and"
echo "configuration procedures to run the suite. Please refer to the VADS manual"
echo "under Installation and Maintenance' and 'Getting Started'."
while [STRLUE]

do
echo"
echo "Choices for timing procedure:"
echo" I - System V"
echo" 2 - VAX/UNIX"
echo" 3 - Sun3 UNIX"
echo" 4 - Sun3 Cross to 68020"
echo" q - Quit and Exit"
echo ""
echo $n "Enter Choice: Sc"
read choice
case Schoice in

[1 .4]) break;;
[qQ]) exit;;
*) echo ""; echo "Valid choices are 1-4"; echo ""; continue;;

esac
done

if[I -d Spbd/sup]
then

if [$choice 4]
then

echo "You need to enter the path to the user configuration directory. If you"
echo "have not created and configured this directory, then you are not ready to"
echo "run the suite. Consult the VADS manual under 'Installation and"
echo "Maintenance'."
echo "
echo Sn "User Config Dir: $c"
read conf-dir
conf-'echo Sconf dir I wc -w'
if [$conf - 0
then

echo "Please re-run the script later when this directory is available."
exit

else
cd $conf-dir
option-'grep 'OPTIONS:INFO' ada.lib I wc -w'
Iblock-'grep 'LINKBLOCK' ada.lib I wc -wc
if [$option -eq 0 -o $1block -eq 0]

then

26

APPENDIX B
"VERDIX.SH" FILE

echo "Your user configuration library does not have all of the elements"
echo "necessary to run the suite using this script. It needs to have a"
echo "LINK..BLOCK directive as well as a linker options file. This"
echo "directive as well as a linker options file. This script is set up to"
echo "run the tests on a cross target assuming that these directives are"
echo "available in that library. Refer to the VADS manual for"
echo "information on what these are, and how to create them."

fi
cd Scur.wd

fi
a.mklib Spbd/sup Sconf_dir

else
a.nldib -i Spbd/sup

fi
pathlist-'grep ADAPATH Spbd/sup/ada.lib"
standard-'echo Spathlist I awk 'I n-split($Oa," ");

for (i-n;i>0;i-) print ati])' I grep "standard"'
vadsaloc-'echo Standard I sed -n 'l,$sx/standardxxgp"
if [$choice- 4]

then
cd Spbd/sup
Lpath -a $vadsioc/cross.jo
cd $vadsloc
cd Spbd/sup
hwchk-'echo $vadsjloc I grep 68881 I wc -w"
echo $hw.chk

if [$hw.chk - 0]
then

echo "It is probable that test A000092 will not compile,"
echo" because a non-hardware version of ATAN is not"
echo "provided. If you wish to run this test, you will need to"
echo "provide this function."
echo""

else
SMcat > math.a << -endmath
package MATH is

-- Math interfaces to MATH for use with A00092.a in PIWG

function SIN (X: FLOAT) return FLOAT;
function COS (X: FLOAT) return FLOAT;
function ATAN (X: FLOAT) return FLOAT;
function SQRT (X: FLOAT) return FLOAT;
function EXP (X: FLOAT) return FLOAT;
function LOGI0 (X: FLOAT) return FLOAT;
function LOG (X: FLOAT) return FLOAT;

27

APPENDIX B
"VERDiX.SH" FILE

pnapuw INLINE(SIN, COS, ATAN, SQRT, EXP, LOG 10, LOG);
end MATH;

with MACHINECODE;
package body MATH is

- use coprocesm instructions to perform operations

FLOAT_SIZE: costant :- 64;
SIZEASSERTION-ERROR: exception;

procedure SIN_68881(X: in FLOAT; RESULT: out FLOAT) is

use MACHINECODE;

begin
code_2' (FMOVEIP, X'REF, FP0);
codelr (FSIND, FPO);
code..' (FMOVED, FN0, RESULTREF);

end SIN_68881;

procedure COS_68881(X: in FLOAT; RESULT: out FLOAT) is

use MACHINE-CODE;

begin
code_2' (FMOVED. XREF, FP0);
codel' (FCOS_D, FP0);
code_2' (FMOVED, FPO, RESULT'REF);

end COS-6888 1;

procedure ATAN_68881 (X: in FLOAT; RESULT: out FLOAT) is
use MACHINECODE;

begin
code.2' (FMOVEJD, X'REF, FPO);
codei' (FATAND, FF0);
code..' (FMOVE_D, FP0, RESULThEF);

end ATAN-6888 1;

procedure SQRT_68881 (X: in FLOAT; RESULT : out FLOAT) is

use MACHINE_CODE;

begin

28

APPENDIX B
"VERDIX*H" FILE

code__X (FMOVE..D, X'REF, FPO);
code_' (FSORTD, FP0);
code..7 (FMOVE_D, FP0, RESULTREF);

end SQRT6888 1;

procedure ETOX_68881(X : in FLOAT; RESULT: out FLOAT) is

use MACHINECODE;

begin
code_2X (FMOVED, X'REF, FP0);
codel' (FETOX..D, FPO);
code_2' (FMOVED, FP0, RESULTREF);

end ETOX-6888 1;

procedure LOGIO_68881(X: in FLOAT; RESULT : out FLOAT) is

use MACHINECODE;

begin
code&2' (FMOVEJD, X'REF, FF0);
code-l' (FLOG I0O1D, FPO);
code..' (FMOVED, FPO, RESULT'REF);

end LOG 10_68881;

procedure LOGN_68881 (X: in FLOAT; RESULT: out FLOAT) is

use MACHINE-CODE;

begin
code_2' (FMOVED, X'REF, FP0);
code-l' (FLOGND, FP0);
code... (FMOVE_D, FP0, RESULT'REF);

end LOGN_6.888 1;

pragmn INLINE (SIN_68881, COS-6888 1, ATAN-68881, SQRT-6888 1, ETOX_6888 1);
pragm INLINE (LOG 10-68881, LOGN-6888 1);

function SIN (X: FLOAT) return FLOAT is

RESULT: FLOAT;

begin
SIN-68881 (X, RESULT);
return RESULT;

end SIN;

29

APM DIX B
"VERDIXSH"FILE

function COS (X: FLOAT) return FLOAT is

RESULT: FLOAT;

begin
COMSM68881 (X, RESULT);
murn RESULT;

end COS;

function ATAN (X: FLOAT) return FLOAT is

RESULT: FLOAT;

begin
ATAN68881 (X, RESULT);
return RESULT;

end ATAN;

function SQRT (X: FLOAT) return FLOAT is

RESULT: FLOAT;

begin
SQRT_68881 (X, RESULT);
return RESULT;

end SQRT;

function EXP (X: FLOAT) return FLOAT is

RESULT: FLOAT;

begin
ETOX_6888 I(X, RESULT);
return RESULT;
end EXP;

function LOG 10 (X: FLOAT) return FLOAT is

RESULT: FLOAT;

begin
LOG 1068881 (X, RESULT);
return RESULT;

end LOG10;

30

APPENDIX 8
"VERDIX.S•. FILE

Aucio LOG(X: FLOAT) retu FLOAT is

RESULT: FLOAT;

LOGN_68881 (X, RESULT);
return RESULT;

end LOG;

kgin
if FLOAT'SIZE /- FLOAT-SIZE then raise SIZE.ASSERTION_ERROR; end if;

end MATH;
-endmath

fi
cd $cur wd

11
lisg-[aA]000001 .a* [aA]000021.a* [aAJ000022.a*
[aA]00003 I.a* [aA]000032.a* [aA]00004 1.a* [aA]000042.a*'
for x in $list

do
y-'echo $x I sed -n 'i,$s/.ada/.a/gp'
cp $x Spbd/sup/Sy

done
else

echo "sup directory already present - no files copied"
fi

if [$cboice = 1)
then

cat > $pbd/sup/a000019.a << -endtime

- This function returns the user time on a Unix system by interfacing to the c library to access -
- the times routine

with system;
function CPUTIMECLOCK return DURATION is

- ticks per second of the clock: from /usr/include/sys/param.h
HZ: constant:- 100

- time in ticks: from /usr/include/sys/types.h
type TIMET is new INTEGER;
- structure filled in by times(): from /usr/includelsys/times.h
type TMSSTRUCT is record

TMSUTIME : TIMET;
TMSSTIME : TIMET;
TMSCUTIME : TIMET;
TMSCSTIME : TIMET;

31

APPENDIX B
"VERDIX•S FILE

end record
TIMEBUF: TMSSTRUCT;
Procedure TIMES (TIMEBUF: SYSTEM.ADDRESS);
prqasm INTERFACE (CTIMES);

begin
TIMES (TIME-BUF'ADDRESS);
return DURATION(DURATION (TIMEBUF.TMSUTIME)IHZ);

end CPU-TIMECLOCK;
- endtime

fi
if [$choice - 2 -o Schoice - 3]

then
cat > Spbd/sup/a000018.a «<- endtime

function CPUTIMECLOCK
return DURATION;

with System;
package UnixResources is

type timeval is
record

sec : integer,
usec: integer,

end record; - timeval

type rusage is
record

ruutime" timeval; - user mode time
ru-stime: timeval; - system mode time
m.yamrss: integer;, - max resident set (kbytes)
rujsrss: integer, - memory shared with others (kbytes *seconds)
ru.drss: integer, - unshared in memory (kbytes * seconds)
ru minflt: integer, - page faults serviced w/o 10
ru majflt: integer, - page faults serviced with 10
runswp: integer;, - number of times swapped out
ruinblock: integer, - times of file system input
ruoutblock : integer, - times of file system output
rumsgsnd: integer; - number of ipc messages sent
rumsgrcv: integer; - number of ipc messages received
ru_nsignals: integer, - number of signals delivered
runvcsw : integer, - number of times context switch due to process surrendering

- the CPU before timeout
runivcsw: integer, - number of times context switch due to process timing out

- (or higher becomes eligible)
end record; - muage

32

APPENDIX B
"VERDIX.SH" FILE

SELF: constant integer :- 0;
CHILDREN : constant integer :- -1;

procedure trusage (who: integer;
rusag...buf: System.address);

pragma interface (C, getrusage);

end UnjixReources;

with Unix..Resources;
function CPLLTIME_.CLOCK

return DURATION
is

rusage...buffer: Unix..Resources.rusage;
problems: exception;
seconds: float;
useconds: float;

begin
UnixResources.getrusage(Unix...Resources.SELF, rusage-buffer'address);
seconds :- float(rusage...buffer.ru..utime.sec + rusage-.buffer.ru...stime.sec);
useconds : float(rumage-.buffer.rujatime.usec + nisage...buffer.ru...stime.usec);
return duration(seconds + (useconds I1000000.0))

end CPLTIME...CLOCK;
-endtime

fi
if [$choice -4)

then
xum[aAJOOOI L~a*
yi& echo $x I sed -n 1S/alagp
cp $x $pbd/sup/Sy

fi
if [-r A*.aJl

then
lisWuABCDEFGHLPTYZ'

else
list-a b c doe f g h I p t y z!

fl
echo "Copying tests and changing names (will take a while)..."
for x in $list
do

if 1! -d Spbd/SxJ
then

aLmklib Spbd/Sx $pbdfsup
cd Spbd/$x

insert any extra a~path or a.info directives here, multiplexed
for release based on choice

33

APPENDIX B
"VERDIX.SH" FILE

caw $choice in
4) if (Sconf 1-O0

then
a.path -i $conLdir

#fi
);;

#euc
cd $cur.wd
fi

if [Sx - a -o Sx - A]
then

for y in [aA]00009[0-7].a*
do

z-'echo Sy I sed -n 'l,Ss/.ada/.a/gp'"
cp Sy $pbd/$x/$z

done
go in and add the proper math package for test a000092
sed -n -e 's/FLOAT-MATHLIB/MATH/g' -e 'p'

$pbd/$x/[aA]000092.a > $pbd/Sx/ptmp
mv Spbd/$x/ptmp $pbd/Sx/a000092.a

else
for y in $x*.a*

do
z-'echo $y I sed -n 'I,Ss/.ada/.a/gp"
cp $y Spbd/$x/$z

done
fi

done
echo "Done"
echo ""
echo "Installation is now complete. You are ready to run the tests. Re-run the script and"
echo "select the run option."
exit

fi

This part of the script is for test modifications
if [$option -eq 2]

then
echo "PIWG does not endorse any test modifications."

fi
The script from here on down is used to run the PIWG suite
if [-r Spbd/sup/aO000 1 .a -o -r Spbd/sup/AOOOO I I.a]

then
crow I

else
crow-0

34

APPENDIX B
"VERDIX.SW' FILE

fi

echo
echo Sn "Do you wish to run the tests WITHOUT suppressed checking (y or n)? $c"
read answer
*,"[$answer = y -o $answer - Y]

then
ada-comp-' -C ada -09'

else
ada-comp-'-C ada -09 -S'

fi

echo""
echo "The support library contains all of the appropriate A files necessary to run all of the tests"
echo "(piwg.io, timing routine, etc). This needs to be compiled before any tests can be run."
echo ""
echo $n "Have you compiled the support library (y or n)? $c"
read answe,
if [$answer- n -o $answer = N]

then
cd $pbd/sup
echo "Making Support Library..."
a.make $ada.comp -v -f *.a
cd Scurwd

fi

echo "Enter desired report file (default is screen)"
echo $n "file> Sc"
read rep-file
rep..pres-'echo Srepjfile I wc -w'
if [$rep..pres !- 0]

then
foo"'echo Srep-file I grep / I wc -w'
if [Sfoo = 0]

then
bar='pwd"
foo=$bar/$repjfile
repjfile-foo

fi
fi

echo Srepfile
while [$TRUE]

do
echo"
echo" 1) Run all tests"
echo" 2) Run tests by letter"
echo" 3) Run individual tests"
echo ""

echo Sn "Enter choice : $c"

35

APPENDIX B
"VERDIXSH" FILE

read rnin..opt
case Sun-..opt in

[1-31) break;;
*) echo " Valid options are 1-3%;

esac
done
runjlis-""
if [Srun...opt -3]

then
echo "Enter desired test numbers separated by spaces. Multiple lines may be used."
echo "Terminate with a blank line"
while [$TRUE]

do
read onejline
cnt-'echo $onejine I wc -w'
if [$cnt - 0]

then
break

run-temp='echo Srunjist Sonejline'
runjlist-.$runjemp

done
for cur-test in $runjlist

do
run..dir-'echo Scur-j.est I sed -n s/[0-9]//gp'
cd $pbd/$un-dir
test..narne-curjcst
if [I -r $test-name.a]

then
test~name-' echo $curjest I sed -n s./S/n/gp'

fi
test-files-'echo Scuritest I sed -n W/$A*.a/gp*
echo "Building test Stest....ame..."
a.make $ada...comp -v -f $testjfiles
if [$cross -0]

then
chk...math-'grep 'with *MATH' Stestjiles Iwc -w'
if [Schk~math -ge 1]

then
a.make Sada...comp -v Stest~name -Im -o Stest..name.out

else
a.make $ada-.comp -v Stest-name -o Stest~name.out

fi

if [!-s $test..name.outJ
then

36

APPENDIX B
"VERDIX.SH" FILE

echo "Could not create test $curtjest"
else

echo "Executing $testkname"
then

if [$rep..pres 0]
then

a.run $test-name.out
else

a.run $test-name.out >> Srepfile 2>& 1
fi

else
if [$rep..pres 0 0]

then
$testname.out

else
$test.name.out >> Srep_file 2>& 1

fi
fi

f-i

cd $curwd # kludgey, but the easiest way around relative paths
done
exit

fi
if [$run-opt - 2]

then
echo "Enter desired test letters separated by spaces. Multiple lines may be used."
echo "Terminate with a blank line"
while [STRUE]

do
read one-line
cnt-'echo $one-jine I wc -w'
if [$cnt- =]

then
break

fi
runjemp='echo $run_list $oneline'
run_list-$runjtemp

done
fi

if [$run-opt I]
then

runjlist-'a b c de fg h I p t y'
fi
for curjlib in $runlist

do

37

APPENDIX B
"VER.DIX.SH" FILE

od Spbd/Scurjlib
echo "Bringing units up to date..."
aimake Sada...comp -v -f *.a
exe....ti-curjlib%.a,
foo-* echo Sexecj tII
urch-'echo M$oo" I sed -n 'sA*//gp I wc -w'
if [$Such 1- 0]

then
exec-J.t 1""

excc..t2-Scur-lib*[0-9].a,
foo-'echo Sexect2-
srch-'echo M$oo" I sed -n 'sA*//gp' I wc-w
if [$srch 1- 0]

then
exec..t2m""

fi
execjlist-* echo "Sexec-tl Sexecjt2"'
for cur-unit in Sexecjist

do
cur-test-'echo Scur-unit I sed -n &A.a//gp'
echo "Building test $cur-.test"
if [Scross - 0]

then
chkjnath-'grep 'with *MATH' Scur-unit Iwc-w
if [$chk...math -ge 1]

then
awmake $ada...comp -v Scurjest -0 Scur..test.out -I m

else
a~make $ada...comp -v Scurjest -o $curjest.out

if [!-s Scurjest.outJ
then

echo "Could not create test Scurjest"
else

echo "Executing $curtest"
if[Iscross - 1]

then
if [Srep-.pres - 0]

then
a.run Scurjest.out

else
a-run Scurjtest-out »> Srep-file 2>& 1

fi
else

38

APPENDIX B
"VBRDIXSH" FILE

if [$rep..pme 0)O
then

$curjest.out
else

Scur-test.out» S>repjflle 2>&lI

fi

* done
od $cur.wd

done

39

APPENDIX C

PIWG (FIRST) EXECUTION TESTS RESULT

USING

SPARCADA ON THE SUN WORKSTATION

40

APPENDIX C
PIWO IFIRST) IEXECUTION TESTS RESULT USING SPARCADA ON THE SUN WORKSTATION

Tet Name:. A000090
Clock resolution --e-rmet running.

Tet Description: Determine clock resolution using second differences of values returned by the
function CPUTimeClock.

Number of sample values is 12000
Clock Resolution - 0.010000000000000 seconds.
Clock Resolution (average) - 0.010000000000000 seconds.
Clock Resolution (variance) - 0.000000000000000 seconds.

Capture a ftw sizes for later analysis
8 Boolean'size
8 Boolean-object'size
8 Charactersize
8 Character-objece'size

32 Positive'size
32 Positive-object'size
32 Integer'size
64 Float'size
32 Duration'size

0.0001 Duration'small
0.0100 System.Tick
0.0202 - clock resolution used for iteration stability

Test Name: A000091 Class Name: Composite
CPU Time:. 33.50 MICROSECONDS plus or minus 1.675
Wall/CPU: 1.00 ratio Iteration Count: 204800
Test Description: Reinhold P. Weicker's DHRYSTONE composite benchmark.

0.0202 - clock resolution used for iteration stability

Test Name: A000092 Class Name: Composite
CPU Time: 106.50 MILLISECONDS plus or minus 5.325
Wall/CPU: 1.01 ratio Iteration Count: 40
Test Description: Ada version of the Whetstone Benchmark Program. Manufacturers math

routines.

Average Whetstone rating: 9390 KWIPS
0.0202 - clock resolution used for iteration stability

41

APPENDIX C
PIWO (FIRST) EXECUTION TESTS RESULT USINM SPARCADA ON THE SUN WORKSTATION

Tee Name. A000093 Clas Name: Composite
CPU Time: 100.13 MILLISECONDS plus or minus 5.006
W4lICPU: 1.01 ratio Iteration Count: 80
Test Description: Ada version of the Whetstone Benchmark Program. Built in 'standard' math

routines.

Average Whetstone rating: 9988 KWIPS

Test Name:. A000094 Class: Composite
Penn 0.10
Towers 0.16
Queens 0.05
Intmm 0.09
Mm 0.04
Puzzle 0.40
)uick 0.08

Aubble 0.16
Tree 0.15
FFT 0.18
Ack 8.18
Test Description: Henessy benchmarks

A000095 collects information interactively, then reads the output from COMPILE.COM or other
script run and produces a compressed file of results.

Enter file name of input file:
** MAIN PROGRAM ABANDONED - EXCEPTION "NAMEERROR" RAISED

0.0202 - clock resolution used for iteration stability

Test Name: B000010 Class Name: Composite
CPU Time: 180.75 MILLISECONDS plus or minus 9.038
Wall/CPU: 1.00 ratio Iteration Count: 40
Test Description: NASA Orbit determination heavy floating point and trig initializing and

running.

4.71471409E+03 4.67389156E+03 2.38594821E+02
-5.33895085E+00 5.19603808E+00 2.25675781E+00

0.0202 - clock resolution used for iteration stability

42

APPENDIX C
MIWO (FIRST) EXECUTION TESTS RESULT USING SPARCADA ON THE SUN WORKSTATION

Test Name: B000013 Class Name: Composite
CPU Time: 2.34 MILLISECONDS plus or minus 0. 117
Wall/CPU: 1.01 ratio Iteration Count: 3200
Teet Description: TRACKER CENTROID Algorithm. All integer calculations searching a 60 x

60 amy.

0.0202 - clock resolution used for iteration stability

WALL time less than CPU time

Teat Name: COOOOO 1 Class Name: Tasking
CPU Time: 389.06 MICROSECONDS plus or minus 19.453
V'ill/CPU: 1.00 ratio Iteration Count: 12800
Teat Description: Task create and terminate measurement with one task, no entries, when task is

in a procedure using a task type in a package, no select statement, no loop,

0.0202 - clock resolution used for iteration stability

Test Name: C000002 Class Name: Tasking
CPU Time: 374.22 MICROSECONDS plus or minus 18.711
Wall/CPU: 1.00 ratio Iteration Count: 12800
Teat Description: Task create and terminate time measurement with one task, no entries when

task is in a procedure, task defined and used in procedure, no select statement,
no loop.

0.0202 - clock resolution used for iteration stability

Test Name: C000003 Class Name: Tasking
CPU Time: 361.72 MICROSECONDS plus or minus 18.086
Wall/CPU: 1.00 ratio Iteration Count: 12800
Test Description: Task create and terminate time measurement. Task is in declare block of

main procedure one task, no entries, task is in the loop.

0.0202 - clock resolution used for iteration stability

Test Name: DV,000 I Class Name: Allocation
CPU Time: 1.39 MICROSECONDS plus or minus 0.070
Wall/CPU: 1.00 ratio Iteration Count: 1638400
Test Description: Dynamic array allocation, use and deallocation time measurement. Dynamic

array elaboration, 1000 integers in a procedure get space and free it in the
procedure on each call.

0.0202 - clock resolution used for iteration stability

43

APPENDIX C
PIWO (FIRST) EXECUION TESTS RESULT USING SPARCADA ON THE SUN WORKSTATION

Teat Nam: D000002 Class Name: Allocation
CPU Time: 339.06 MICROSECONDS plus or minus 16.953
Wall/CPU: 1.00 ratio Iteration Count: 12800
Teat Description: Dynamic array elaboration and initialization time measurement allocation,

initialization, use and deallocation. 1000 integers initialized by others->1

0.0202 - clock resolution used for iteration stability

Test Nme: D000003 Class Name: Allocation
CPU Time: 2.26 MICROSECONDS plus or minus 0.113
Wall/CPU: 1.00 ratio Iteration Count: 1638400
Test Description: Dynamic record allocation and deallocation time measurement elaborating,

allocating, and deallocating record containing a dynamic array of 1000
integers.

0.0202 - clock resolution used for iteration stability

Test Name: D000004 Class Name: Allocation
CPU Time: 339.84 MICROSECONDS plus or minus 16.992
Wall/CPU: 1.00 ratio Iteration Count: 12800
Test Description: Dynamic record allocation and deallocation time measurement elaborating,

initializing by (DYNAMICSIZE, (others->l)) record containing a dynamic
array of 1000 integers.

0.0202 = clock resolution used for iteration stability

Test Name: EOOOOO Class Name: Exception
CPU Time: 9.74 MICROSECONDS plus or minus 0.487
Wall/CPU: 1.01 ratio Iteration Count: 409600
Test Description: Time to raise and handle an exception. Exception defined locally and

handled locally.

0.0202 - clock resolution used for iteration stability.

Test Name: E000002 Class Name: Exception
CPU Time: 26.07 MICROSECONDS plus or minus 1.304
Wall/CPU: 1.00 ratio Iteration Count: 204800
Test Description: Exception raise and handle timing measurement when exception is in a

procedure in a package.

0.0202 = clock resolution used for iteration stability.

44

APPENDIX C
PIWO (FIRST) EXECUTION TESTS RESULT USING SPARCADA ON THE SUN WORKSTATION

Test Name: E000003 Class Name: Exception
CPU Time: 35.50 MICROSECONDS plus or minus 1.775
Wall/CPU: 1.01 ratio Iteration Count: 204800
Test Description: Exception raise and handle timing measurement when exception is raised

nested 3 deep in procedure calls.

0.0202 - clock resolution used for iteration stability

Test Name: E000004 Class Name: Exception
CPU Time: 46.29 MICROSECONDS plus or minus 2.315
Walt/CPU: 1.01 ratio Iteration Count: 102400
Test Description: Exception raise and handle timing measurement when exception is nested 4

deep in procedures.

0.0202 - clock resolution used for iteration stability

Test Name: E000005 Class Name: Exception
CPU Time: 42.58 MICROSECONDS plus or minus 3.156
Wall/CPU: 1.00 ratio Iteration Count: 25600
Test Description: Exception raise and handle timing measurement when exception is in a

rendezvous. Both the task and the caller must handle the exception.

0.0202 - clock resolution used for iteration stability

* POSSIBLY INACCURATE MEASUREMENT *****

Test Name: F000001 Class Name: Style
CPU Time: 0.09 MICROSECONDS plus or minus 0.025
Wall/CPU: 1.00 ratio Iteration Count: 3276800
Test Description: Time to set a boolean flag using a logical equation, a local, and a global

integer are compared. Compare this test with F000002

0.0202 - clock resolution used for iteration stability

***** POSSIBLY INACCURATE MEASUREMENT *****

Test Name: F000002 Class Name: Style
CPU Time: 0.10 MICROSECONDS plus or minus 0.025
Wall/CPU: 1.01 ratio Iteration Count: 3276800
Test Description: Time to set a boolean flag using an 'if test, a local, and a global integer are

compared. Compare this test with F00000 1.

0.0202 = clock resolution used for iteration stability

45

APPENDIX C
PM (FIRST) EXECUTION TESTS RESULT USING SPARCADA ON THE SUN WORKSTATION

Test Name: G000001 Class Name: Input/Output
CPU Time: 39.06 MICROSECONDS plus or minus 1.973
Wall/CPU: 1.00 ratio Iteration Count: 40960
Test Description: TEXTJO.GET_LINE reading 20 characters, time measured. A scratch file is

written, then read and reset.

0.0202 - clock resolution used for iteration stability

Test Name: G000002 Class Name: Input/Output
CPU Time: 5 1.51 MICROSECONDS plus or minus 2.576
WaIVCPU: 1.02 ratio Iteration Count: 40960
Test Description: TEXT_1O.GET called 20 times per line, time measured. A scratch file is

written, then read and reset. Compare to O000001 for about same number of
characters.

0.0202 = clock resolution used for iteration stability

Test Name: G000003 Class Name: Input/Output
CPU Time: 196.29 MICROSECONDS plus or minus 9.815
Wall/CPU: 1.02 ratio Iteration Count: 20480
Test Description: TEXT=IO.PUTLINE for 20 characters, timing measurment. A scratch file is

opened, written and reset.

0.0202 - clock resolution used for iteration stability

Test Name: 0000004 Class Name: Input/Output
CPU Time: 44.43 MICROSECONDS plus or minus 2.222
WallCPU: 1.00 ratio Iteration Count: 40960
Test Description: TEXTJO.PUT 20 times with one character, time measurement. A scratch

file is written, reset and rewritten. Compare, approximately, to G000003.

0.0202 - clock resolution used for iteration stability

Test Name: G000005 Class Name: Input/Output
CPU Time: 19.04 MICROSECONDS plus or minus 0.952
Wali/CPU: 1.00 ratio Iteration Count: 163840
Test Description: TEXT_1O.GET an integer from a local string, timing measurement. Use

TEXTjO.PUT to convert 1..100 to a string, then use TEXTIJO.GET to get
the number back.

0.0202 - clock resolution used for iteration stability

46

APPENDIX C
PIWO (FIRST) EXECUTION TESTS RESULT USING SPARCADA ON THE SUN WORKSTATION

Test Name: G000006 Class Name: Input/Output
CPU Time: 122.07 MICROSECONDS plus or minus 6.104
Wall/CPU: 1.01 ratio Iteration Count: 20480
Test Description: TEXTIO.GET getting a floating point fraction from a local string. Timing

m r t on 0.001 to 0.01 range of numbers. Compare, approximately, to
G000005 for integer vs float.

0.0202 - clock resolution used for iteration stability

Test Name: G000007 Class Name: Input/Output
CPU Time: 1031.25 MICROSECONDS plus or minus 51.563
Wail/CPU: 1.00 ratio Iteration Count: 5120
Test Description: Open and close an existing file, time measurement. A scratch file is created

and closed. The scratch file is opened IN_FILE and closed in a loop

0.0202 - clock resolution used for iteration stability

Test Name: H000001 Class Name: Chapter 13
CPU Time: 1.21 MICROSECONDS plus or minus 0.061
Wall/CPU: 1.01 ratio Iteration Count: 3276800
Test Description: Time to perform standard boolean operations on arrays of booleans. For this

test the arrays are PACKED with the pragma 'PACK.' For this test the
operations are performed on the entire arrays.

0.0202 clock resolution used for iteration stability

Test Name: H000002 Class Name: Chapter 13
CPU Time: 18.29 MICROSECONDS plus or minus 0.914
Wall/CPU: 1.00 ratio Iteration Count: 409600
Test Description: Time to perform standard boolean operations on arrays of booleans. For this

test the arrays are NOT PACKED with the pragma 'PACK.' For this test the
operations are performed on the entire array.

0.0202 = clock resolution used for iteration stability

Test Name: H000003 Class Name: Chapter 13
CPU Time: 44.82 MICROSECONDS plus or minus 2.241
WaIl/CPU: 1.00 ratio Iteration Count: 102400
Test Description: Time to perform standard boolean operations on arrays of booleans. For this

test the arrays are PACKED with the pragma 'PACK.' For this test the
operations are performed on components in a loop

0.0202 - clock resolution used for iteration stability

47

APPENDIX C
PIWO (FIRST) EXECUTION TESTS RESULT USING SPARCADA ON THE SUN WORKSTATION

Test Name: H000004 Class Name: Chapter 13
CPU Time: 18.48 MICROSECONDS plus or minus 0.924
Wall/CPU: 1.01 ratio Iteration Count: 409600
Test Description: Time to perform standard boolean operations on arrays of booleans. For this

test the arrays are NOT PACKED with the pragma 'PACK.' For this test the
operations are performed on components in a loop.

0.0202 - clock resolution used for iteration stability

"* POSSIBLY INACCURATE MEASUREMENT *

Test Name: H000005 Class Name: Chapter 13
CPU Time: 0.00 MICROSECONDS plus or minus 0.025
Wall/CPU: 1.00 ratio Iteration Count: 3276800
Test Description: The time for UNCHECKEDCONVERSION to move one INTEGER object

to another INTEGER object. This may be zero with good optimization.

0.0202 = clock resolution used for iteration stability

Test Name: H000006 Class Name: Chapter 13
CPU Time: 4.27 MICROSECONDS plus or minus 0.214
Wall/CPU: 1.00 ratio Iteration Count: 819200
Test Description: The time for UNCHECKEDCONVERSION to move 10 floating array

objects to a 10 component floating record.

0.02G2 = clock resolution used for iteration stability

Test Name: H000007 Class Name: Chapter 13
CPU Time: 3.13 MICROSECONDS plus or minus 0.156
Wall/CPU: 1.00 ratio Iteration Count: 1638400
Test Description: The time to store and extract bit fields that are defined by representation

clauses using Boolean and Integer record components. 12 accesses, 5 stores,
I record copy.

0.0202 = clock resolution used for iteration stability

Test Name: H000009 Class Name: Chapter 13
CPU Time: 4.79 MICROSECONDS plus or minus 0.239
Wall/CPU: 1.02 ratio Iteration Count: 819200
Test Description: The time to perform a change of representation. If the result is near zero,

feature probably not implemented.

0.0202 = clock resolution used for iteration stability

48

APPENDIX C
PIWO (FIRST) EXECUTION TESTS RESULT USING SPARCADA ON THE SUN WORKSTATION

Test Name: LO00001 Class Name: Iteration
CPU Time: 0.13 MICROSECONDS plus or minus 0.008
Wall/CPU: 1.01 ratio Iteration Count: 10240000
Test Description: Simple "for" loop time for I in I .. 100 loop time reported is for once through
loop.

0.0202 - clock resolution used for iteration stability

Test Name: L000002 Class Name: Iteration
CPU Time: 0.13 MICROSECONDS plus or minus 0.008
Wall/CPU: 1.00 ratio Iteration Count: 10240000
Test Description: Simple "while" loop time while I <= 100 loop time reported is for once

through loop.

0.0202 - clock resolution used for iteration stability

Test Name: L000003 Class Name: Iteration
CPU Time: 0.15 MICROSECONDS plus or minus 0.008
Wall/CPU: 1.00 ratio Iteration Count: 10240000
Test Description: Simple "exit" loop time, loop I:-I+1; exit when 1>100; end loop; time

reported is for once through loop.

0.0202 = clock resolution used for iteration stability

Test Name: L000004 Class Name: Iteration
CPU Time: 0.12 MICROSECONDS plus or minus 0.010
Wall/CPU: 1.00 ratio Iteration Count: 8192000
Test Description: Measures Compiler's choice to UNWRAP a small loop of five (5) iterations

when given a PRAGMA OPTIMIZE(TIME). An execution time less than .05
microseconds indicates the unwrap occurred.

0.0202 = clock resolution used for iteration stability

Test Name: L000005 Class Name: Iteration
CPU Time: 0.12 MICROSECONDS plus or minus 0.010
Wall/CPU: 1.01 ratio Iteration Count: 8192000
Test Description: Measures Compiler's choice to UNWRAP a small loop of five (5) iterations

when given a PRAGMA OPTIMIZE (Space). An execution speed < .05
microseconds indicates the unwrap occurred.

0.0202 = clock resolution used for iteration stability

49

APPENDIX C
PIWG (FIRST) EXECUTION TESTS RESULT USING SPARCADA ON THE SUN WORKSTATION

Test Name: P000001 Class Name: Procedure
CPU Time: 0.28 MICROSECONDS plus or minus 0.014
Wall/CPU: 1.01 ratio Iteration Count: 8192000
Test Description: Procedure call and return time (may be zero if automatic inlining) procedure

is local, no parameters.

0.0202 = clock resolution used for iteration stability

Test Name: P000002 Class Name: Procedure
CPU Time: 0.28 MICROSECONDS plus or minus 0.0 14
Wall/CPU: 1.01 ratio Iteration Count: 8192000
Test Description: Procedure call and return time. Procedure is local, no parameters when

procedure is not inlinable.

0.0202 = clock resolution used for iteration stability

Test Name: P000003 Class Name: Procedure
CPU Time: 0.28 MICROSECONDS plus or minus 0.014
Wall/CPU: 1.01 ratio Iteration Count: 8192000
Test Description: Procedure call and return time measurement. The procedure is in a separately

compiled package. Compare to P000002

0.0202 = clock resolution used for iteration stability

Test Name: P000005 Class Name: Procedure
CPU Time: 0.38 MICROSECONDS plus or minus 0.020
Wall/CPU: 1.01 ratio Iteration Count: 4096000
Test Description: Procedure call and return time measurement. The procedure is in a separately

compiled package. One parameter, in INTEGER

0.0202 = clock resolution used for iteration stability

Test Name: P000006 Class Name: Procedure
CPU Time: 0.33 MICROSECONDS plus or minus 0.020
Wall/CPU: 1.00 ratio Iteration Count: 4096000
Test Description: Procedure call and return time measurement. The procedure is in a separately

compiled package. One parameter, out INTEGER.

0.0202 = clock resolution used for iteration stability

50

APPENDIX C
PIWG O FIRST) EXECUTION TESTS RESULT USING SPARCADA ON THE SUN WORKSTATION

Test Name: P000007 Class Name: Procedure
CPU Time: 0.42 MICROSECONDS plus or minus 0.021
Wall/CPU: 1.01 ratio Iteration Count: 4096000
Test Description: Procedure call and return time measurement. The procedure is in a separately

compiled package. One parameter, in out INTEGER

0.0202 - clock resolution used for iteration stability

Test Name: P000010 Class Name: Procedure
CPU Time: 1.86 MICROSECONDS plus or minus 0.093
Wall/CPU: 1.00 ratio Iteration Count: 2048000
Test Description: Procedure call and return time measurement. Compare to P000005

10 parameters, in INTEGER

0.0202 - clock resolution used for iteration stability

Test Name: P00001 ! Class Name: Procedure
CPU Time: 3.90 MICROSECONDS plus or minus 0.195
Wall/CPU: 1.00 ratio Iteration Count: 1024000
Test Description: Procedure call and return time measurement. Compare to P000005, P0000 10

20 parameters, in INTEGER.

0.0202 = clock resolution used for iteration stability

Test Name: P000012 Class Name: Procedure
CPU Time: 1.79 MICROSECONDS plus or minus 0.089
Wall/CPU: 1.00 ratio Iteration Count: 2048000
Test Description: Procedure call and return time measurement. Compare with P000010

(discrete vs composite parameters) 10 paramaters, in MY_RECORD a three
component record.

0.0202 = clock resolution used for iteration stability

Test Name: P000013 Class Name: Procedure
CPU Time: 3.71 MICROSECONDS plus or minus 0.186
WaIl/CPU: 1.00 ratio Iteration Count: 1024000
Test Description: Procedure call and return time measurement 20 composite 'in' parameters

the composite type is a 3 component record.

0.0202 = clock resolution used for iteration stability

5I

APPENDIX C
PIWO (FIRSIs EXECUTION TESTS RESULT USING SPARCADA ON THE SUN WORKSTATION

Tet Name: TOOOOOI Clan Name: Tasking
CPU Time: 143.16 MICROSECONDS plus or minus 7.158
WalI/CPU: 1.01 ratio Iteration Count: 51200
Test Description: Minimum rendezvous, entry call and return time I task I entry, task inside

procedure no select.

0.0202 - clock resolution used for iteration stability

Test Name: T000002 Class Name: Tasking
CPU Time: 136.52 MICROSECONDS plus or minus 6.826
Wall/CPU: 1.00 ratio Iteration Count: 51200
Test Description: Task entry call and return time measured. One task active, one entry in task,

task in a package, no select statement.

0.0202 - clock resolution used for iteration stability

Test Name: T000003 Class Name: Tasking
CPU Time: 136.33 MICROSECONDS plus or minus 6.816
Wall/CPU: 1.01 ratio Iteration Count: 51200
Test Description: Task entry call and return time measured. Two tasks active, one entry per

task, tasks in a package, no select statement.

0.0202 = clock resolution used for iteration stability

Test Name: T000004 Class Name: Tasking
CPU Time: 143.16 MICROSECONDS plus or minus 7.158
Wall/CPU: 1.00 ratio Iteration Count: 51200
Test Description: Task entry call and return time measured. One tasks active, two entries, tasks

in a package using select statement.

0.0202 = clock resolution used for iteration stability

Test Name: T000005 Class Name: Tasking
CPU Time: 146.88 MICROSECONDS plus or minus 7.344
Wall/CPU: 1.02 ratio Iteration Count: 32000
Test Description: Task entry call and return time measured. Ten tasks active, one entry per

task, tasks in a package, no select statement.

0.0202 - clock resolution used for iteration stability

52

APPENDIX C
PIWO (FIRST) EXECUFION TESTS RESULT USING SPARCADA ON THE SUN WORKSTATION

Test Name: T000006 Class Name: Tasking
CPU Time: 169.06 MICROSECONDS plus or minus 8.453
Wall/CPU: 1.00 ratio Iteration Count: 32000
Test Description: Task entry call and return time measurement. One task with 10 entries, task

in a package, one select statement, compare to TOOOO05.

0.0202 - clock resolution used for iteration stability

Test Name: T000007 Class Name: Tasking
CPU Time: 72.27 MICROSECONDS plus or minus 3.613
Wall/CPU: 1.01 ratio Iteration Count: 102400
Test Description: Minimum rendezvous, entry call and return time 1 task I entry no select.

0.0202 - clock resolution used for iteration stability

Test Name: T000008 Class Name: Tasking
CPU Time: 776.56 MICROSECONDS plus or minus 38.828
Wall/CPU: 1.00 ratio Iteration Count: 6400
Test Description: Measure the average time to pass an integer from a producer task through a

buffer task to a consumer task.

Test Name: YOOOOOI Measure actual delay vs commanded delay

Commanded Actual CPU Iterations

0.0010 0.0200 0.0000 1000
0.0020 0.0200 0.0000 500
0.0040 0.0201 0.0000 250
0.0080 0.0200 0.0000 125
0.0160 0.0200 0.0000 62
0.0320 0.0400 0.0000 31
0.0640 0.0700 0.0000 15
0.1280 0.1300 0.0000 7
0.2560 0.2600 0.0000 3
0.5120 0.5200 0.0000 2
1.0240 1.0300 0.0000 2
2.0480 2.0500 0.0000 2

Y000002 Measure CPU_TIMECLOCK against a watch for I minute. See if every 5 seconds
are ticked off about right.
0
5
10
15
20
25

53

APPENDIX C
PIWO (FIRST) EXECUTION TESTS RESULT USING SPARCADA ON THE SUN WORKSTATION

30
35
40
45
50
55
60
65

Y000003 Measure CALENDAR.CLOCK against a watch for I minute. See if every 5 seconds
ae ticked off about right.
0
** MAIN PROGRAM ABANDONED - EXCEPTION "storageerror" RAISED

Error in kernel:: exception_handler: below bottom of user stack.

54

APPENDIX D

SCRIPT FILE FOR

"SECOND RUN" PIWG TESTS

ON THE SUN WORKSTATION

35

APPENDIX D
SCRIPT FILE FOR "SECOND RUN" PIWO TESTS ON THE SUN WORKSTATION

File SECOND
This is script file to perform the SECOND RUN benchmark as described in the 8_lO0piwg
README file for the UNIX VERDIX version of PIWG running on the SUN station. This
versiom of SECOND was intended to reside and execute in the subdirectory Z where all the
"Z files, "ZOOOOOi.A" thru "Z000023.A" also reside.

echo' compiling files separately'
echo' start timeI
home/corbeaux/davidso&/8_l_90piwgsup/aO005 I .out

ada z000 L&.a
ada z000002.a
ada z000003.a
ada z000004.a
ada zOO0005.a
ada z(00006.a
ada z000007.a
ada z000008.a
ada z000009.a
ada z00IlO.a
ada zOO001 L.a
ada z000012.a
ads z000013.a
ada z000014.a
ada zOOOOI5.a
ada z000016.a
ada zO00016aLa
ada z000017.a
ada zOO00 I 7a.a
ada -M z000018.a -o z00001.out
z000018.out
ada z000020.a
ada z00002 L.a
ada z000022.a
ada -M z000023.a -o z000023.out
z000023.out
/home/corbeaux/davidson/8_l_90piwg/sup/aOO005 L.out
echo' end time
echo ''
echo 'Difference between the Start and Stop Wall Times represents a composite software'
echo 'development benchmark if no other tasks are running on the machine under test.'

56

"APPENDIX E

PIWG "SECOND RUN" RESULTS

USING

SPARCADA ON THE SUN WORKSTATION

57

APPENDIX E
PIWO "SECOND RUN" RESULTS USING SPARCADA ON THE SUN WORKSTATION

comlpiling files separately
tart time

CPU time now- 0.0400 WALL time now- 64069.1366 seconds.
Tes printout and value of acceleration, 9.80665000000000E+00 meter per second squared - G
I. 10324812500000E+0 1 meter
1.50000000000014E+00 second
2.08030461473005E+01 meter per second
UP SORTED DATA

I 1.000000000000003E+00 AAA FIRST 1.10
2 2.00000000000000E+00 BBB SECOND 2.10
3 3.00000000000000E+00 CCC THIRD 3.10
4 4.00000000000000E+00 DDD FOURTH 4.10

DOWN SORTED DATA
4 4.OOOOOOOOOOOOOOE+00 DDD FOURTH 4.10
3 3.OOOOOOOOOOOOOOE+00 CCC THIRD 3.10
2 2.00000000000000E+00 BBB SECOND 2.10
I 1.000O0000000000E+00 AAA FIRST 1.10

in tb
gone fishng

end FISH
ALLSTATEMENTS.PROCEDURE_2
into LOOPNAMEI
Z000021 finished
CPU time now- 0.0100 WALL time now- 64395.3406 seconds.
end time

Difference between the Start and Stop Wall Times represents a composite software development
benchmark if no other tasks are running on the machine under test.

58

APPENDIX F

SCRIPT FILE FOR

"THIRD RUN" PIWG TESTS

ON THE SUN WORKSTATION

59

59

APPENDIX F
SCRIPT FILE FOR 4'MIHRD RUN" PIWG TESTS ON THE SUN WORKSTATION

File THIRD
This is a wr*file to peform the THIRD RUN benchmark as described in the 8 '.I.L90piwg
README Hie for th NX VERDIX version of PIWO running on the SUN station. This
0 version of THIRD was intended to reside and execute in the wubdirectory ZOTHER where all
0 the OZ" files UZOOO I 0.A" thru "Z000200.A" also reide..

echo 'compilin~ files separately'
echo 'stint =rn
hmfcorbaxiuxdavidson/8.L-90piwg/sup/aOO0OS 1Lout

ada zOOO I00.a
ada zOOO 101La,
ada z0001I02.a
ada z00 1 03.a
ada zOOO I 04.a
ada zOO0lOS.a
ada z00 1 06.a
ada z0001I07.a
ada zoOlOS O.&
ada z00 1 09.a
ada zOOD I10.a
ads zOOOlIlIla
ada zOO I 12.a
ada zOOOl 113.*
ada zOODI M4a
ada zOOOI 15.a
ada zOOOI 16.a
ada zOO0l 17.a
adsazOO01lIS.&
ada zOO01 19.a
ada z000120.a
ada zOOD 121.a
ada z000 122.a
ada z00 1 23.a
ada z0001I24.a
ada zOOO I125.a
ada z0001I26.a
ada z0001I27.a
ada z0001I28.a
ada z0001I29.a
ada z0001I30.a
ada z000 13 L&a
ada z00 1 32.a
ada zOOO 133..
ada z000134.a
ada z0001I35.a
ada z000136.a
ads z000137.a
ada z0001I38.a
ada zOO01 39.a
ada z000 140.a
ada z000 14 L&
ada z000142.a
ads z000I143.a
ada zOOD 144.a

60

APPENDIX F
SCRWFT FILE FOR "THIRD RUN" PIWO TESTS ON THE SUN WORKSTATION

We. a3OO 145.a
a&. z000 146.a
ada zOO00147.a
ads WOO01 48.a
ads z000 149.a
ada z0001I5S.&
Wda zO015I.a
ada z0001I52.a
ada z0001I53.a
ada z0001I54.a
ada zOOOISS.a
ada z0001 36.a
ada z0001I57.a

* ada zOOOI 58.a
ad& z00 1 59.a
ada z0001I60.a
ad. zOOO 161 La
ada z0001I62.a
ada zOOO 1 63..
ada z0001I64.a
ada zOOO I65.a
ad. z0001I66.a
a&a z0001I67.a
ad& z0001I68.a
ad. z0001I69.a
ada z0001I70.a
ada zOOO 171 La
ad& z0001I72.a
ada z0001I73.a
ada z0001I74.a
ada z0001I75.a
ada z0001I76.a
ada z0001I77.a
ada zOOO 1 78.a
ada z0001I79.a
ada z0001I80.a
ada zOOO 181 La
ada z0001I82.a
ada zO000I83.a
ada z0001I84.a

* ad. z0001I85.a
ada z0001I86.a
ada z0001I87.a

* ada zOO~IS8.a
ada zO000I89.a
ada z0001I90.a
ada z000 19 La
ada z0001I92.a
ads z0001I93.a
ad. z0001I94.a
ada zOOO0195.a
ada z0001I9%.a
ada z000197.a
ad. zOOO 198..

61

APPENDIX F
SCRIPT FME FOR "THIRD RUN" PIWO TESTS ON THE SUN WORKSTATION

ads Z00199.&
/borne/corbeaux/davidsoft/8-1-9piwg/supiaOOOOS Lout
echo'end time'
echo"
echo",
ec tom ilen- is at once in z000200.a'

hometwx/davidavdon/8-1-OpiwSUpI5OOOO5l Out
ada z000200.a
fIhomecorbeaux/davidwSon/...9Opiwg/sup/aOOOOI Lout
echo 'end time'

62

APPENDIX G

PIWG "THIRD RUN" RESULTS

USING

SPARCADA ON THE SUN WORKSTATION

63

APPENDIX G
PIWG "THIRD RUN" RESULTS USING SPARCADA ON THE SUN WORKSTATION

compiling files separately
mtart time
CPU time now- 0.0300 WALL time now- 37158.72 12 seconds.
CPU time now- 0.0200 WALL time now- 37680.7195 seconds.
end time

compiling files at once in z000200.a
start time
CPU time now- 0.0200 WALL time now- 37680.7587 seconds.
CPU time now- 0.0200 WALL time now- 38496.1001 seconds.
end time

64

"APENDIX H

"COMPILE.COM" FILE

65

APPENDIX H
"COMP1LE.COM" FILE

St RUN THIS FIRST ON VAX VMS (Feature benchmarks)St
$I VAX VMS files to compile (using standard output PIWG.JO)
S SET VERIFY
S SET NOON
$ SET DEF 1DIAQ:[DAVIDSON.PIWG]
$ DEL [.ADALIB]O.*;* ! Clean out any old libraries
S ACS CREATE LID [.ADALIB]
S ACS SET LIB [.ADALIBJ
$ @ VAXCONFIG
S ADA A0000I
$ ADA A000012 IVAX Ada dependent
$ ADA A000021
S ADA A000022
$ ADA A000031
$ ADA A000032
$ ADA A000041
$ ADA A000042
S ADA A000047 ! PIWGTIMER...GENERIC spec
$ ADA A000048 ! PIWG_TIMERGENERIC body
$ ADA A000051 !wall timing routines for host only
S ADA A000052 !
S ADA A000053 !
$ ADA A000054 !
S ADA A000055 !
$ ADA A000090
S ADA A000091
S ADA A000092 !VAX Ada dependent
$ ADA A000093
$ ADA A000094 !just for comparison, now split up into A..K
S ADA A000094A
$ ADA A000094B
$ ADA A000094C
$ ADA A000094D
S ADA A000094E
$ ADA A000094F
$ ADA A000094G
$ ADA A000094H
$ ADA A000094I
S ADA A000094J
$ ADA A000094K
$ ADA A000095 !program to process output file
$ ADA BOOOOOIA
S ADA BOOOOOIB/NOCHECK/WARN-(WARN:NONE) !make equivalent of pragma suppress
$ ADA B000002A
$ ADA B000002B/NOCHECK/WARN-(WARN:NONE)
S ADA B000003A
S ADA B000003B/NOCHECK/WARN-(WARN:NONE)
S ADA B000004A
$ ADA B000004B/NOCHECK/WARN-(WARN:NONE)
$ ADA BOOOO10
$ ADA B000011
$ ADA B000013
$ ADA COOOOOI

66

APPENDIX H
"COMILE.COM" FILE

S ADA C000002
S ADA C000003
S ADA DOOMOO1
$ ADA D000002
S ADA D000003
S ADA D000004
$ ADA E000001
S ADA E000002
S ADA E000003
$ ADA E000004
$ ADA E000005
$ ADA FOOOOO I
$ ADA F000002
$ ADA OOOOO01
$ ADA G000002
S ADA G000003
$ ADA G000004
$ ADA G000005
$ ADA G000006
$ ADA G000007
$ ADA H000001
$ ADA H000002
$ ADA H000003
$ ADA H000004
$ ADA H000005
$ ADA H000006
$ ADA H000007
S ADA H000008
S ADA H000009
$ ADA L000001
$ ADA L000002
$ ADA L000003
$ ADA L000004
$ ADA L000005
$ ADA P000001
$ ADA P000002
$ ADA P000003
$ ADA P000004
$ ADA P000005
$ ADA P000006
$ ADA P000007
$ ADA P000010
$ ADA P00001 I
$ ADA P000012
$ ADA P000013
S ADA TOOOOO I
$ ADA T000002
$ ADA T000003
$ ADA T000004
$ ADA T000005
S ADA T000006
$ ADA T000007 texecution possibly machine dependent
$ ADA T000008

67

APPENDIX H
"COMMI•.COM" FILE

S ADA YOOOOOI
$ ADA Y000002
$ ADA Y000003
S ADA AOOO I00
$ ACS LINK AOOO100
$ RUN A000100 tall feature tests in one procedure
$I !run one feature at a time if results are better
$1 I mail in printout
$SADA AOOO1OI about half the features
S ADA A000102 !the other half
$ ACS LINK AOOO101
$ ACS LINK A000102
$ ACS LINK A000051
$ ACS LINK A000052
$ ACS LINK A000053
$ ACS LINK A000054
$ ACS LINK A000055
$ ACS LINK A000095
$ ACS LINK Y000002
$ ACS LINK Y000003
$ RUN A000051
$ RUN A000052
$ RUN A000053
$ RUN A000054
$ RUN AOOOIOI
$ RUN A000102
$ RUN A000055
$ DEL SCRATCH*.*;* !remove scratch flies from "G" tests
$ DEL A000052D.;* Iremove intermediate timing files
$ DEL PIWGRES.;* Iremove saved results if any
S! DEL [.ADALIB]*.*;* Iremove compilation library

68

APPENDIX I

PIWG (FIRST) EXECUTION TEST RESULTS

USING

DEC ADA Of- £A; VAX COMPUTER

69

PIWO (FIRST) E).MECrION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

SISYLOGIN.COM
StFor the AAAF CLuster
S SET NOVERIFY
S SET NOON
S SET DEF $ISDIA9:[DAVIDSON.PIWG]
$ DEL [.ADALIB].*; MClean out any old libraries
$ ACS CREATE LIB [.ADALIB]
%ACS-I-CL.LIBCRF, Library V $DIA9:[DAVIDSON.PIWG.ADALIB] created
$ ACS SET LIB [.ADALIB]
%ACS-I-CL.LIBIS, Current program library is
$I SDIA9:[DAVIDSON.PIWG.ADALIBJ
$ @ VAXCONFIG

System configuration:
Cluster: AAAF
Node: KNIGHT
CPU: VAX 4000-200

Character emulated: TRUE
F_FLOAT emulated: FALSE
DFLOAT emulated: FALSE
GFLOAT emulated: FALSE
HFLOAT emulated: TRUE

VMS version: V5.5
Virtual page count: 240000
Working set maximum: 16400
Main Memory (32.00Mb)
System device: RF72
User device: RF71

VAX Ada software configuration:
ADA version: "VAX Ada V2.2-38"
ACS version: "VAX Ada V2.2-38"
ADARTL version: "V5.4-03"
ADAMSG version: "1-029"

Process configuration:
Open file limit: 50
Enqueue quota: 100
Timer queue quota: 20
Page file quota: 17000
Working set memory parameters:

WSQUOTA: 2500
WSEXTENT: 4000
Adjustment: enabled

$ EXIT !0
$ ADA A000001
$ ADA A000012 !VAX Ada dependent
$ ADA A00002I
$ ADA A000022

70

APPENDIX I
MIWO £FIRST EXECUfION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

S ADA A00003 I
S ADA A000032
S ADA A000041
S ADA A000042
S ADA A000047 PIWGTIMER..GENERIC spec
S ADA A000048 IP1WGTIMER..GENERIC body
S ADA A00005 I !wall timing routines for host only
S ADA A000052 !
S ADA A000053 !
S ADA A000054 !
S ADA A000055 !
S ADA A000090
S ADA A000091
S ADA A000092 WAX Ada dependent
S ADA A000093
S ADA A000094 !just for comparison, now split up into A..K
$ ADA A000094A
S ADA A000094B
$ ADA A000094C
S ADA A000094D
$ ADA A000094E
$ ADA A000094F
S ADA A000094G
$ ADA A000094H
$ ADA A0000941
S ADA A000094J
$ ADA A000094K
S ADA A000095 !program to process output file
$ ADA BOOOOOIA
$ ADA BOOOOO I B/NOCHECK/WARN-(WARN:NONE) !make equivalent of pragma suppress
$ ADA B000002A
$ ADA BO00002B/NOCHECK/WARN=(WARN:NONE)
S ADA B000003A
S ADA B000003B/NOCHECK/WARN-(WARN:NONE)
$ ADA B000004A
S ADA B0000048/NOCHECK/WARN-(WARN:NONE)
$ ADA B000010
SADA BOOOO1I
S ADA B000013
$ ADA COOOOOI
S ADA C000002
S ADA C000003
S ADA DOOOOOI
S ADA D000002
S ADA D000003
S ADA D000004

71

PIWO (FI•T) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

S ADA BOO0001
S ADA E000002
S ADA E000003
$ ADA E000004
S ADA E000005
S ADA FOOOOOI
S ADA F000002
$ ADA G000001
S ADA G000002
S ADA G000003
S ADA 0000004
S ADA G000005
S ADA G000006
S ADA G000007
$ ADA H000001
$ ADA H000002
S ADA H000003
$ ADA H000004
S ADA H000005
$ ADA H000006
$ ADA H000007
$ ADA H00000O
S ADA H000009
S ADA L000001
$ ADA L000002
$ ADA L000003
$ ADA L000004
S ADA L000005
S ADA P000001
S ADA P000002
S ADA P000003
S ADA P000004
S ADA P000005
$ ADA P000006
S ADA P000007
S ADA P000010
S ADA P000011
S ADA P000012
$ ADA P000013
S ADA T000001
S ADA T000002
S ADA T000003
S ADA T000004
$ ADA T000005
S ADA T000006
$ ADA T000007 iexemtion posibly machine dependent

72

APPENDIX I
PIWO (FIRST) EXECUTlON TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

$ ADA T00000
S ADA YOOOOOI
S ADA Y000002
S ADA Y000003
S ADA A000100
S ACS LINK A000100
%ACS-I-CL=.LINKING, Invoking the VMS Linker for VAXVMS target
$SET DEFAULT $ I SDIA9:[DAVIDSON.PIWG]
SLINK:-""
SLINK-
/NOMAP-
/EXE-BAOOO100-

SYSSINPUT:/OPTIONS
SI SDIA9 [DAVIDSON.PIWG]AOOO100.OBJ; 1

$STATUS - SSTATUS
$DELETE SISDIA9-[DAVIDSON.PIWG]AOOO100.OBJ; I
$DELETE S I $DIA9:[DAVIDSON.PIWG]A000IOO.COM; I
SEXIT
$ RUN A000100 !all feature tests in one procedure

0.0201 - clock resolution used for iteration stability

Test Name: A000090
Clock resolution measurement running

Test Description: Determine clock resolution using second differences of values returned by the
function CPU_Time_Clock.

Number of sample values is 12000
Clock Resolution - 0.009948730468750 seconds.
Clock Resolution (average) = 0.009948730468750 seconds.
Clock Resolution (variance) = 0.000000000000000 seconds.

Capture a few sizes for later analysis
I Boolean'size
8 Boolean-objectsize
8 Character'size
8 Character-object'size

31 Positive'size
32 Positive-object'size
32 Integer'size
32 Float'size
32 Duration'size

0.0001 Duraton'small
0.0099 System.Tick

73

APPENDIX I
PIWO (FAPPE ND RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Nwe:. A000091 Class Name: Composite
CPU Time. 156.25 MICROSECONDS plus or minus 7.813
Wall/CPU: 1.12 ratio. Iteration Count: 25600
Test Description: Reinhold P. Weicker's DHRYSTONE composite benchmark.

Test Nam: A000093 Class Name: Composite
CPU Time: 175.00 MILLISECONDS plus or minus 8.750
WalI/CPU: 1.07 ratio. Iteration Count: 40
Teat Description: Ada version of the Whetstone Benchmark Program. Built in 'standard' math

routines.

Average Whetstone rating: 5714 KWIPS

Test Name: A000094 Class: Composite
Penn 0.45
Towers 0.72
Queens 0.23
Intmm 0.19
Mm 0.18
Puzzle 1.09
Quick 0.18
Bubble 0.25
Tree 0.36
FFT 0.30
Ack 16.42

Test Description: Henessy benchmarks.

Test Name: A000094A Class Name: Composite
CPU Time: 0.44 SECONDS plus or minus 0.022
Wall/CPU: 1. 11 ratio. Iteration Count: 10
Test Description: Hennesy Benchmark, Penn highly recursive 43300 uses of procedure

permute.

Test Name: A000094B Class Name: Composite
CPU Time: 0.74 SECONDS plus or minus 0.037
Wall/CPU: 1.07 ratio. Iteration Count: 10
Test Description: Hennesy Benchmark, TOWERS highly recursive.

Test Name: A000094C Class Name: Composite
CPU Time: 0.24 SECONDS plus or minus 0.012
Wall/CPU: 1.03 ratio. Iteration Count: 20
Test Description: Hennesy Benchmark, Queens highly recursive.

74

APPENDI I
PIWO (FIRST EXECU`MN TEST RESULTS USING DEC ADA ON THE VAX COMPUTIER

Teot Name: A000094D Class Name: Composite
CPU Time. 0.18 SECONDS plus or minus 0.009
Wail/CPU: 1.09 ratio. Iteration Count: 40
Teot Description: Hennesy Benchmark, Intmm integer matrix multiply performed by an

instantiated generic procedure.

Test Name: A000094E Class Name: Composite
CPU Time: 0.19 SECONDS plus or minus 0.010
Wall/CPU: 1.04 ratio. Iteration Count: 40
Test Description: Hennesy Benchmark, Mm real matrix multiply performed by an instantiated

generic procedure.

Test Name: A000094F Class Name: Composite
CPU Time: 1.12 SECONDS plus or minus 0.056
WalI/CPU: 1.05 ratio. Iteration Count: 10
Test Description: Hennesy Benchmark, Puzzle highly recursive.

Test Name: A000094G Class Name: Composite
CPU Time: 0.18 SECONDS plus or minus 0.009
Wall/CPU: 1.08 ratio. Iteration Count: 40
Test Description: Hennesy Benchmark, quick sort 5000 element random integer array using

quick sort.

Test Name: A000094H Class Name: Composite
CPU Time: 0.25 SECONDS plus or minus 0.012
Wall/CPU: 1.02 ratio. Iteration Count: 20
Test Description: Hennesy Benchmark, Bubble sort 5000 random integer array using bubble

sort.

Test Name: A0000941 Class Name: Composite
CPU Time: 0.37 SECONDS plus or minus 0.019
Wall/CPU: 1.07 ratio. Iteration Count: 20
Test Description: Hennesy Benchmark, Tree insert 5000 random elements into a tree that is

sorted.

Test Name: A000094J Class Name: Composite
CPU Time: 0.27 SECONDS plus or minus 0.013
Wall/CPU: 1.03 ratio. Iteration Count: 16
Teas Description: Hennesy Benchmark, FFT perform 20 256 point complex FFT's floating point

intensive.

Test Name: A000094K Class Name: Composite
CPU Time: 16.42 SECONDS plus or minus 0.821
WalI/CPU: 1.05 ratio. Iteration Count: 2
Test Description: Hennesy Benchmark, Ack highly recursive 10 executions of Ackerman (3,6).

75

APPENDIX I
PIWO (FIRST) EXECUJTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: BOOOOOIA Class Name: Application
CPU Time: 1017.00 MICROSECONDS plus or minus 50.850
Wall/CPU: 1.05 ratio. Iteration Count: 10000
Test Description: Tracking mathematical application using covarience matrix fixed point, delta

2.0"*(-15) all checks on.

Test Name: BOOOOOIB Class Name: Application
CPU Time: 546.00 MICROSECONDS plus or minus 27.300
Wall/CPU: 1.01 ratio. Iteration Count: 10000
Test Description: Tracking mathematical application using covarience matrix fixed point, delta

2.0"*(-i5) checks suppressed.

Test Name: B000002A Class Name: Application
CPU Time: 462.00 MICROSECONDS plus or minus 23.100
Wall/CPU: 1.13 ratio. Iteration Count: 10000
Test Description: Tracking mathematical application using covarience matrix digits 6 range -

1.Oe+9.. I.Oe+9 all checks on.

Test Name: B000002B Class Name: Application
CPU Time: 311.00 MICROSECONDS plus or minus 15.550
Wall/CPU: 1.09 ratio. Iteration Count: 20000
Test Description: Tracking mathematical application using covarience matrix digits 6 range -

1.Oe+9.. I.Oe+9 checks suppressed.

Test Name: B000003A Class Name: Application
CPU Time: 781.00 MICROSECONDS plus or minus 39.050
Wall/CPU: 1.04 ratio. Iteration Count: 10000
Test Description: Tracking mathematical application using covarience matrix digits 9 range -

I.Oe+9.. I .Oe+9 all checks on.

Test Name: B000003B Class Name: Application
CPU Time: 514.00 MICROSECONDS plus or minus 25.700
Wall/CPU: 1.10 ratio. Iteration Count: 10000
Test Description: Tracking mathematical application using covarience matrix digits 9 range -

I.Oe+9.. I.Oe+9 checks suppressed.

Test Name: B000004A Class Name: Application
CPU Time: 484.00 MICROSECONDS plus or minus 24.200
Wall/CPU: 1.09 ratio. Iteration Count: 10000
Test Description: Tracking mathematical application using covarience matrix digits 6 and

integer all checks on.

76

APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: B000004B Class Name: Application
CPU Time: 327.00 MICROSECONDS plus or minus 16.350
Wall/CPU: 1.03 ratio. Iteration Count: 20000
Test Description: Tracking mathematical application using covarience matrix digits 6 and

integer checks suppressed.

Test Name: BOOOO10 Class Name: Composite
CPU Time: 939.99 MILLISECONDS plus or minus 46.999
Wall/CPU: 1.12 ratio. Iteration Count: 5
Test Description: NASA Orbit determination heavy floating point and trig initializing and

running.

4.75433302E+03 4.65319583E+03 2.26151483E+02
-5.29274842E+00 5.22249948E+00 2.25443633E+00

Test Name: BOOOO 11 Class Name: Composite
CPU Time: 85.37 MILLISECONDS plus or minus 4.269
Wall/CPU: 1.03 ratio. Iteration Count: 80
Test Description: JIAWG Kalman benchmark. Just put in PIWG measurement harness.

Test Name: B000013 Class Name: Composite
CPU Time: 7.42 MILLISECONDS plus or minus 0.371
Wall/CPU: 1.04 ratio. Iteration Count: 800
Test Description: TRACKER CENTROID Algorithm all integer calculations searching a 60 x

60 array.

Test Name: COOOOOI Class Name: Tasking
CPU Time: 1890.66 MICROSECONDS plus or minus 94.533
Wall/CPU: 1.06 ratio. Iteration Count: 3200
Test Description: Task create and terminate measurement with one task, no entries, when task is

in a procedure using a task type in a package, no select statement, no loop.

Test Name: C000002 'lass Name: Tasking
CPU Time: 1893.75 MICROSECONDS ,s or minus 94.687
Wall/CPU: 1.07 ratio. Iteration Count: 3200
Test Description: Task create and terminate time measurement, with one task, no entries when

task is in a procedure, task defined and used in procedure, no select statement,
no loop.

Test Name: C000003 Class Name: Tasking
CPU Time: 1893.75 MICROSECONDS plus or minus 94.687
Wall/CPU: 1.07 ratio. Iteration Count: 3200
Test Description: Task create and terminate time measurement. Task is in declare block of

main procedure one task, no entries, task is in the loop.

77

APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: D000001 Class Name: Allocation
CPU Time: 2.91 MICROSECONDS plus or minus 0.197
Wall/CPU: 1.03 ratio. Iteration Count: 409600
Test Description: Dynamic array allocation, use and deallocation time measurement.

Dynamic array elaboration, 1000 integers in a procedure get space and free it
in the procedure on each call.

Test Name: D000002 Class Name: Allocation
CPU Time: 535.94 MICROSECONDS plus or minus 26.797
Wall/CPU: 1.04 ratio. Iteration Count: 12800
Test Description: Dynamic array elaboration and initialization time measurement allocation,

initialization, use and deallocation 1000 integers initialized by others->l.

Test Name: D000003 Class Name: Allocation
CPU Time: 3.00 MICROSECONDS plus or minus 0.197
Wall/CPU: 1.09 ratio. Iteration Count: 409600
Test Description: Dynamic record allocation and deallocation time measurement elaborating,

allocating and deallocating record containing a dynamic array of 1000
integers.

Test Name: D000004 Class Name: Allocation
CPU Time: 542.96 MICROSECONDS plus or minus 27.148
Wall/CPU: 1.02 ratio. Iteration Count: 12800
Test Description: Dynamic record allocation and deallocation time measurement elaborating,

initializing by (DYNAMIC-SIZE, (others-->l)) record containing a dynamic
array of 1000 integers

Test Name: EOOOOO I Class Name: Exception
CPU Time: 86.91 MICROSECONDS plus or minus 4.346
Wall/CPU: 1.03 ratio. Iteration Count: 51200
Test Description: Time to raise and handle an exception. Exception defined locally and handled

locally.

Test Name: E000002 Class Name: Exception
CPU Time: 145.70 MICROSECONDS plus or minus 7.285
Wall/CPU: 1.01 ratio. Iteration Count: 25600
Test Description: Exception raise and handle timing measurement when exception is in a

procedure in a package.

Test Name: E000003 Class Name: Exception
CPU Time: 98.05 MICROSECONDS plus or minus 4.902
Wall/CPU: 1.03 ratio. Iteration Count: 51200
Test Description: Exception raise and handle timing measurement when exception is raised

nested 3 deep in procedure calls.

78

APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: E000004 Class Name: Exception
CPU Time: 97.46 MICROSECONDS plus or minus 4.873
Wall/CPU: 1.02 ratio. Iteration Count: 51200
Test Description: Exception raise and handle timing measurement when exception is nested 4

deep in procedures.

Test Name: E000005 Class Name: Exception
CPU Time: 982.81 MICROSECONDS plus or minus 49.140
Wall/CPU: 1.03 ratio. Iteration Count: 6400
Test Description: Exception raise and handle timing measurement when exception is in a

rendezvous. Both the task and the caller must handle the exception.

Test Name: FOOOOO 1 Class Name: Style
CPU Time: 0.55 MICROSECONDS plus or minus 0.098
Wall/CPU: 1.03 ratio. Iteration Count: 819200
Test Description: Time to set a boolean flag using a logical equation a local and a global integer

are compared compare this test with F000002.

Test Name: F000002 Class Name: Style
CPU Time: 0.43 MICROSECONDS plus or minus 0.098
WalI/CPU: 1.04 ratio. Iteration Count: 819200
Test Description: Time to set a boolean flag using an 'if test a local and a global integer are

compared compare this test with FOOOOO 1.

Test Name: Gr)0001 Class Name: Input/Output
CPU Time: 114.01 MICROSECONDS plus or minus 5.701
Wall/CPU: 1.02 ratio. Iteration Count: 40960
Test Description: TEXT_IO.GETLINE reading 20 characters, time measured. A scratch file is

written, then read and reset

Test Name: G000002 Class Name: Input/Output
CPU Time: 765.63 MICROSECONDS plus or minus 38.282
Wall/CPU: 1.03 ratio. Iteration Count: 5120
T:•t Description- TEXT_IO.GET called 20 times per line, time measured a scratch file is

written, then read and reset. Compare to GOOOOO I for about same number of
characters.

Test Name: G000003 Class Name: Input/Output
CPU Time: 818.37 MICROSECONDS plus or minus 300.902
Wall/CPU: 19.12 ratio. Iteration Count: 5120
Test Description: TEXTO.PUT_LINE for 20 characters, timing measurement a scratch file is

opened, written and reset.

79

APPENDIX I
PIWO (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: G000004 Class Name: Input/Output
CPU Time: 1343.76 MICROSECONDS plus or minus 182.355
Wall/CPU: 11.59 ratio. Iteration Count: 5120
Test Description: TEXTJO.PUT 20 times with one character, time measurement a scratch file

is written, reset and rewritten compare, approximately, to G000003.

Test Name: G000005 Class Name: Input/Output
CPU Time: 70.80 MICROSECONDS plus or minus 3.540
Wall/CPU: 1.03 ratio. Iteration Count: 40960
Test Description: TEXTIO.GET an integer from a local string, timing measurement use

TEXTJO.PUT to convert 1.. 100 to a string then use TEXTIO.GET to get
the number back.

Test Name: G000006 Class Name: Input/Output
CPU Time: 162.11 MICROSECONDS plus or minus 8.105
Wall/CPU: 1.06 ratio. Iteration Count: 20480
Test Description: TEXTJO.GET getting a floating point fraction from a local string.

Timing measurement on 0.001 to 0.01 range of numbers compare,
approximately, to G000005 for integer vs float.

Test Name: G000007 Class Name: Input/Output
CPU Time: 18968.96 MICROSECONDS plus or minus 861.479
Wall/CPU: 3.42 ratio. Iteration Count: 320
Test Description: Open and close an existing file, time measurement. A scratch file is created

and closed. The scratch file is opened IN..FILE and closed in a loop.

Test Name: H1000001 Class Name: Chapter 13
CPU Time: 1.79 MICROSECONDS plus or minus 0.098
Wall/CPU: 1.04 ratio. Iteration Count: 819200
Test Description: Time to perform standard boolean operations on arrays of booleans.

For this test the arrays are PACKED with the pragma 'PACK.' For this test
the operations are performed on the entire arrays.

Test Name: H000002 Class Name: Chapter 13
CPU Time: 41.70 MICROSECONDS plus or minus 2.085
Wall/CPU: 1.07 ratio. Iteration Count: 102400
Test Description: Time to perform standard boolean operations on arrays of booleans. For this

test the arrays are NOT PACKED with the pragma 'PACK.' For this test the
operations are performed on the entire array.

Test Name: H000003 Class Name: Chapter 13
CPU Time: 130.47 MICROSECONDS plus or minus 6.523
Wall/CPU: 1.04 ratio. Iteration Count: 51200
Test Description: Time to perform standard boolean operations on arrays of booleans. For this

test the arrays are PACKED with the pragma 'PACK.' For this test the
operations are performed on components in a loop.

8o

APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: H000004 Class Name: Chapter 13
CPU Time: 44.63 MICROSECONDS plus or minus 2.231
Wall/CPU: 1.05 ratio. Iteration Count: 102400
Test Description: Time to perform standard boolean operations on arrays of booleans. For this

test the arrays are NOT PACKED with the pragma 'PACK.' For this test the
operations are performed on components in a loop.

Test Name: H000005 Class Name: Chapter 13
CPU Time: 0.22 MICROSECONDS plus or minus 0.098
Wall/CPU: 1.05 ratio. Iteration Count: 819200
Test Description: The time for UNCHECKEDCONVERSION to move one INTEGER object

to another INTEGER object. This may be zero with good optimization.

Test Name: H000006 Class Name: Chapter 13
CPU Time: 7.42 MICROSECONDS plus or minus 0.371
Wall/CPU: 1.04 ratio. Iteration Count: 409600
Test Description: The time for UNCHECKED_-CONVERSION to move 10 floating array

objects to a 10 component floating record.

Test Name: H000007 Class Name: Chapter 13
CPU Time: 11.01 MICROSECONDS plus or minus 0.551
Wall/CPU: 1.03 ratio. Iteration Count: 409600
Test Description: The time to store and extract bit fields that are defined by representation

clauses using Boolean and Integer record components. 12 accesses, 5 stores,
I record copy.

Test Name: H000008 Class Name: Chapter 13
CPU Time: 4.08 MICROSECONDS plus or minus 0.204
WalI/CPU: 1.05 ratio. Iteration Count: 409600
Test Description: The time to store and extract bit fields that are defined by nested

representation clauses using packed arrays of Boolean and Integer record
components.

Test Name: H000009 Class Name: Chapter 13
CPU Time: 13.06 MICROSECONDS plus or minus 0.653
WaIVCPU: 1.04 ratio. Iteration Count: 409600
Test Description: The time to perform a change of representation. If the result is near zero,

feature probably not implemented

Test Name: L.000001 Class Name: Iteration
CPU Time: 0.25 MICROSECONDS plus or minus 0.063
Wall/CPU: 1.04 ratio. Iteration Count: 1280000
Test Description: Simple "for" loop time for I in I .. 100 loop time reported is for once through

loop.

S1

APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name. L000002 Class Name: Iteration
CPU Time: 0.16 MICROSECONDS plus or minus 0.063
Wall/CPU: 1.06 ratio. Iteration Count: 1280000
Test Description: Simple "while" loop time while I <- 100 loop time reported is for once

through loop.

Test Name: L000003 Class Name: Iteration
CPU Time: 0.19 MICROSECONDS plus or minus 0.063
Wall/CPU: 1.07 ratio. Iteration Count: 1280000
Test Description: Simple "exit" loop time; loop I:=I+I; exit when 1>100; end loop; time

reported is for once through loop.

Test Name: L000004 Class Name: Iteration
CPU Time: 0.21 MICROSECONDS plus or minus 0.079
Wall/CPU: 1.18 ratio. Iteration Count: 1024000
Test Description: Measures Compiler's choice to UNWRAP a small loop of five (5) iterations

when given a PRAGMA OPTIMIZE (TIME). An execution time less than .05
microseconds indicates the unwrap occurred.

Test Name: L000005 Class Name: Iteration
CPU Time: 0.19 MICROSECONDS plus or minus 0.079
Wall/CPU: 1.06 ratio. Iteration Count: 1024000
Test Description: Measures Compiler's choice to UNWRAP a small loop of five (5) iterations

when given a PRAGMA OPTIMIZE (Space). An execution speed <.05
microseconds indicates the unwrap occurred.

Test Name: P000001 Class Name: Procedure
CPU Time: 0.06 MICROSECONDS plus or minus 0.079
Wall/CPU: 1.05 ratio. Iteration Count: 1024000
Test Description: Procedure call and return time (may be zero if automatic inlining) procedure

is local no parameters.

Test Name: P000002 Class Name: Procedure
CPU Time: 7.01 MICROSECONDS plus or minus 0.351
Wall/CPU: 1.06 ratio. Iteration Count: 512000
Test Description: Procedure call and return time. Procedure is local, no parameters when

procedure is not inlinable.

Test Name: P000003 Class Name: Procedure
CPU Time: 7.07 MICROSECONDS plus or minus 0.353
Wall/CPU: 1.08 ratio. Iteration Count: 512000
Test Description: Procedure call and return time measurement. The procedure is in a separately

compiled package. Compare to P000002.

82

APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: P000004 Class Name: Procedure
CPU Time: 0.52 MICROSECONDS plus or minus 0.079
Wall/CPU: 1.06 ratio. Iteration Count: 1024000
Test Description: Procedure call and return time measurement. The procedure is in a separately

compiled package pragma INLINE used. Compare to P00000 1.

Test Name: P000005 Class Name: Procedure
CPU Time: 7.85 MICROSECONDS plus or minus 0.393
Wall/CPU: 1.05 ratio. Iteration Count: 512000
Test Description: Procedure call and return time measurement. The procedure is in a separately

compiled package. One parameter, in INTEGER.

Test Name: P000006 Class Name: Procedure
CPU Time: 8.91 MICROSECONDS plus or minus 0.445
Wall/CPU: 1.18 ratio. Iteration Count: 512000
Test Description: Procedure call and return time measurement. The procedure is in a separately

compiled package. One parameter, out INTEGER.

Test Name: P000007 Class Name: Procedure
CPU Time: 8.32 MICROSECONDS plus or minus 0.416
Wall/CPU: 1.08 ratio. Iteration Count: 512000
Test Description: Procedure call and return time measurement. The procedure is in a separately

compiled package. One parameter, in out INTEGER.

Test Name: P000010 Class Name: Procedure
CPU Time: 15.35 MICROSECONDS plus or minus 0.768
Wall/CPU: 1.05 ratio. Iteration Count: 256000
Test Description: Procedure call and return time measurement. Compare to P000005 10

parameters, in INTEGER.

Test Name: P000011 Class Name: Procedure
CPU Time: 22.58 MICROSECONDS plus or minus 1.129
Wall/CPU: 1.07 ratio. Iteration Count: 256000
Test Description: Procedure call and return time measurement. Compare to P000005, P000010

20 parameters, in INTEGER.

Test Name: P000012 Class Name: Procedure
CPU Time: 10.98 MICROSECONDS plus or minus 0.549
Wall/CPU: 1.05 ratio. Iteration Count: 256000
Test Description: Procedure call and return time measurement. Compare with P000010

(discrete vs composite parameters) 10 paramaters, in MYRECORD a three
component record.

33

APPENDIX I
PIWO (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: P000013 Class Name: Procedure
CPU Time: 13.37 MICROSECONDS plus or minus 0.693
WalI/CPU: 1.08 ratio. Iteration Count: 256000
Test Description: Procedure call and return time measurement 20 composite 'in' parameters the

composite type is a three component record

Test Name: TOOOOOI Class Name: Tasking
CPU Time: 175.78 MICROSECONDS plus or minus 8.789
Wall/CPU: 1.08 ratio. Iteration Count: 25600
Test Description: Minimum rendezvous, entry call and return time I task I entry, task inside

procedure no select.

Test Name: T000002 Class Name: Tasking
CPU Time: 171.48 MICROSECONDS plus or minus 8.574
WalI/CPU: 1.04 ratio. Iteration Count: 25600
Test Description: Task entry call and return time measured. One task active, one entry in task,

task in a package, no select statement.

Test Name: T000003 Class Name: Tasking
CPU Time: 183.59 MICROSECONDS plus or minus 9.180
Wall/CPU: 1.10 ratio. Iteration Count: 25600
Test Description: Task entry call and return time measured. Two tasks active, one entry per

task, tasks in a package, no select statement.

Test Name: T000004 Class Name: Tasking
CPU Time: 205.86 MICROSECONDS plus or minus 10.293
WalI/CPU: 1.05 ratio. Iteration Count: 25600
Test Description: Task entry call and return time measured. One tasks active, two entries, tasks

in a package using select statement.

Test Name: T000005 Class Name: Tasking
CPU Time: 230.00 MICROSECONDS plus or minus 11.500
Wall/CPU: 1. 11 ratio. Iteration Count: 32000
Test Description: Task entry call and return time measured. 10 tasks active, one entry per task,

tasks in a package, no select statement.

Test Name: T000006 Class Name: Tasking
CPU Time: 321.25 MICROSECONDS plus or minus 16.062
Wall/CPU: 1.06 ratio. Iteration Count: 16000
Test Description: Task entry call and return time measurement. One task with ten entries, task

in a package one select statement, compare to T000005.

84

"APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: T000008 Class Name: Tasking
CPU Time: 375.01 MICROSECONDS plus or minus 18.750
WallCPU: 1.09 ratio. Iteration Count: 12800
Test Description: Measure the average time to pass an integer from a producer task through a

buffer task to a consumer task.

Test Name: YOOOOOI Measure actual delay vs commanded delay

Commanded Actual CPU Iterations

0.0010 0.0100 0.0000 1024
0.0020 0.0101 0.0000 512
0.0039 0.0107 0.0000 256
0.0078 0.0099 0.0000 128
0.0156 0.0200 0.0000 64
0.0313 0.0400 0.0000 32
0.0625 0.0699 0.0000 16
0.1250 0.1299 0.0000 8
0.2500 0.2500 0.0000 4
0.5000 0.5000 0.0000 2
1.0000 1.0000 0.0000 2
2.0000 2.0000 0.0000 2

$V !run one feature at a time if results are better
V! !mail in printout
$ ADA A000101 !about half the features
$ ADA A000102 !the other half
$ ACS LINK A00O ! 1
%ACS-I-CLLINKING, Invoking the VMS Linker for VAX-VMS target
$SET DEFAULT $S $DIA9:[DAVIDSON.PIWG]
SLINK :- ""
SLINK-
/NOMAP-
/EXE-[]AOOO101-

SYSSINPUT:/OPTIONS
$ i$DIA9:[DAVIDSON.PIWG]AO00101.OBJ;1

$STATUS - $STATUS
SDELETE $ ISDIA9:[DAVIDSON.PIWG]A000101.OBJ; I
$DELETE SI SDIA9: [DAVIDSON.PIWG]A000 101 .COM; I
$EXIT
$ ACS LINK A000102
%ACS-I-CL._LINKING, Invoking the VMS Linker for VAX-VMS target
$SET DEFAULT $I $DIA9:[DAVIDSON.PIWG]
SLINK :-""
SLINK-
/NOMAP-

83

A"flNDO I
MW PiO (iS) EXBCI.TWHO TUTr RESLTS USIN DEC ADA ON THE VAX COWMPUE

=EmD-AOOO 02-
SYSSJNPUTFJOPTIONS

SI SD1A9-.DAVIDSON.PJ WGJAOOO 102.0WJ;
$STATUS - SSTATUS
$DELETE S ISDJA9:[DAVIDSON.PJ WG]AOOO I102.0WJ; I
$DELETE SISDIA9-[DAVIDSON.PIWGJAOOOIO2.COM; 1
SExrr
S ACS LINK A00005 I
%ACS-I-CLLINKING, Invoking the VMS Linker for VAX-VYMS target
5521 DEFAULT SISDIA9:[DAVIDSON.PIWG]
SLINK:-"
SLINK-
INOMAP-
IEXE-(1A00005 1-

SYSSINPIJTJOPTIONS
SI SDIA9:(DAVIDSON.PIWGJAO00OS I.OBJ; I

SSTATUS - SSTATUS
$DELETE S I SDIA9:[DAVIDSON.PIWGJAOOOO5 I .OBJ; 1
SDELETE S I SDIA9:[DAVIDSON.PIWG]AOOOOS L COM; 1
$EXIT
S ACS LINK A000052
%ACS-1-CL_.LINK1NO, Invoking the VMS Linker for VA.XYMS target
SSET DEFAULT $I SDIA9:[DAVIDSON.PIWGJ
SLINK:-"
SLINK-
/NOMAP-
/EXE-[0A000052-

SYSSINPUT:/OPTIONS
SI SDIA9:[DA VIDSON.PI WG]AOOOOS2.OBJ; I

SSTATUS - SSTATUS
SDELETE S I SDIA9j[DAVIDSON.PI WGJAOOOOS2.OBJ; I
$DELETE $I SDIA9: [DA VIDSON.PIWGJAOOOO52.COM; 1
SEXIT
S ACS LINK A000053
%ACS-I-CL_.LINKING, Invoking the VMS Linker for VAX-.VMS target
$SET DEFAULT $I SDIA9:(DAVJDSON.PIWGJ
SLINK.-
SLINK-
/NOMAP-
/EXE-IJAOOOOS3-

SYSSINPUT.IOPTIONS
SI SDIA9 [DAVIDSON.PIWGJA0OOO53.OBJ; I

SSTATUS, - $STATUS
SDELETE $I SDIA9:[DAVIDSON.PIWGjAOOOO53.OBJ; I
SDELETE SI SDIA9 IDA VIDSON.PI WGJAOOOOS3.COM; I
SEXIT

86

APPENDIX I
PIWO (FIRST7) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

$ ACS LINK A000054
%ACS-1-CL_.LINKING, Invoking the VMS Linker for VAX-VMS target
$SET DEFAULT SI SDIA9:[DAV1DSON.PIWG]
SLINK.-m"*
SLINK-
/NOMAP-
/EXE-fJAOOOO54-

SYS$INPUT:/OPTIONS
* S I SD1A9:[DAVIDSON.PIWG]A000054.OBJ; 1

$STATUS, - $STATUS
$DELETE SI SDIA9:[DAVIDSON.PIWGJAOOOOS4.OBJ; I

* S$DELETE SI SDIA9: [DA VIDSON.PI WGJAOOOO54 .COM; 1
$EXIT
S ACS. LINK A000055
%ACS-I-CLLINKING, Invoking the VMS Linker for VAX. VMS target
$SET DEFAULT SI SDIA9:[DAVIDSON.PIWG]
SLINK:-""
SLINK-
/NOMAP-
/EXE-[JAOOOOSS-

SYSSINPUT:IOPTIONS,
SI SDIA9:[DAVIDSON.PIWG]AOOOOSS.OBJ; 1

$STATUS - SSTATUS
$DELETE SI SDIA9:[DAVIDSON.PI WGJAOOOOS5.OBJ; I
SDELETE Si SDIA9:[DAVIDSON.?! WGJA000055.COM; I
$EXIT
S ACS LINK A000095
%ACS-I-CL..LINKING, Invoking the VMS Linker for VAX..VMS target
$SET DEFAULT SI SDIA9:[DAVIDSON.PIWG]
SLINK :-""
SLINK-
INOMAP-
/EXE-[JAOOOO9S-

SYSSINPUr:/OPTIONS
S ISDIA9:[DAVIDSON.PIWGJAOOOO95.OBJ;I

$STATUS - SSATUS
$DELETE SI SDIA9:[DA VIDSON.PI WG]A000095.OBJ; I

* S$DELETE S 1SDIA9:[DAVIDSON.PIWGJAOOOO95.COM; 1
$EXIT
S ACS LINK Y000002
%/ACS-1-CL-.LINKING, Invoking the VMS Linker for VAXYMS target
SSET DEFAULT SlSDIA9:(DAVIDSON.?! WGJ
SLINK:-i""
SLINK-
/NOMAP-
/EXE'0]Y000002-

87

APPENDIX I
FiWO (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

SYSSINPUT:/OPTIONS
1 ISDIA9:[DA VIDSON.PIWG]YO00002.OBJ; 1

SSTATUS - SSTATUS
SDELETE $I SDIA9:[DAVIDSON.PIWG]YO00002.OBJ; I
$DELETE $ 1SDIA9:[DAVIDSON.PIWG]Y000002.COM; I
$EXIT
S ACS LINK Y000003
%ACS-1-CLLINKING, Invoking the VMS Linker for VAXVMS target
$SET DEFAULT $I SDIA9:[DAVIDSON.PIWG]
SLINK :-""
SLINK-
/NOMAP-
/EXE-[]Y000003-

SYSSINPUT:/OPTIONS
$ SIDIA9: [DAVIDSON.PIWG]Y000003.OBJ; 1

SSTATUS STATUS
SDELETE SI SDIA9: [DAVIDSON.PIWG]YO00003.OBJ; I
SDELETE SI SDIA9:[DAVIDSON.PIWG]Y000003.COM; I
SEXIT
S RUN A00005 1

CPU time now- 1689.3900 WALL time now- 65495.6900 seconds.
$ RUN A000052
$ RUN A000053
S RUN A000054
$ RUN A000101

0.0201 - clock resolution used for iteration stability

Test Name: A000090
Clock resolution mtsurement running

Test Description: Determine clock resolution using second differences of values returned by the
function CPUTimeClock.

Number of sample values is 12000
Clock Resolution - 0.009948730468750 seconds.
Clock Resolution (average) - 0.009948730468750 seconds.
Clock Resolution (variance) - 0.000000000000000 seconds.

Capture a few sizes for later analysis
I Boolean'size
8 Boolean-objec'size
8 Charactee'size
8 Character-object'size

31 Positive'size
32 Positive-object'size
32 integer'size
32 Flostsize

Ls

APPENDIX I
FIWO (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

32 Durado'size
0.0001 Duration'small
0.0099 System.Tick

Test Name:. A000091 Class Name: Composite
CPU Time:. 171.09 MICROSECONDS plus or minus 8.555
Wail/CPU: 1.10 ratio. Iteration Count: 25600
Test Description: Reinhold P. Weickers DHRYSTONE composite benchmark.

Test Name: A000092 Class Name: Composite
CPU Time: 142.50 MILLISECONDS plus or minus 7.125
WalI/CPU: 1.07 ratio. Iteration Count: 40
Test Description: Ada version of the Whetstone Benchmark Program. Manufacturers math

routines

Average Whetstone rating: 7018 KWIPS

Test Name: A000093 Class Name: Composite
CPU Time: 178.25 MILLISECONDS plus or minus 8.912
Wall/CPU: 1.04 ratio. Iteration Count: 40
Test Description: Ada version of the Whetstone Benchmark Program. Built in 'standard' math
routines.

Average Whetstone rating: 5610 KWIPS

Test Name: A000094 Class: Composite
Penn 0.48
Towers 0.72
Queens 0.24
lntmm 0.19
Mm 0.22
Puzzle 1.11
Quick 0.18
Bubble 0.24
Tree 0.41
FFT 0.30
Ack 16.40

Test Description: Henessy benchmarks.

Test Name: A000094A Class Name: Composite
CPU Time: 0.43 SECONDS plus or minus 0.022
WalI/CPU: 1.11 ratio. Iteration Count: 10
Test Description: Hennesy Benchmark, Penn highly recursive 43300 uses of procedure

permute.

89

APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name. A000094B Class Name: Composite
CPU Time: 0.73 SECONDS plus or minus 0.037
Wall/CPU: 1.09 ratio. Iteration Count: 10
Test Description: Hennesy Benchmark, TOWERS highly recursive.

Test Name: A000094C Class Name: Composite
CPU Time: 0.24 SECONDS plus or minus 0.012
Wall/CPU: 1.06 ratio. Iteration Count: 20
Test Description: Hennesy Benchmark, Queens highly recursive.

Test Name: A000094D Class Name: Composite
CPU Time: 0.17 SECONDS plus or minus 0.009
Wall/CPU: 1.03 ratio. Iterat'on Count: 40
Test Description: Hennesy Benchmark, Intmnm integer matrix multiply performed by an

instantiated generic procedure.

Test Name: A000094E Class Name: Composite
CPU Time: 0.19 SECONDS plus or minus 0.010
Wall/CPU: 1.05 ratio. Iteration Count: 40
Test Description: Hennesy Benchmark, Mm real matrix multiply performed by an instantiated

generic procedure.

Test Name: A000094F Class Name: Composite
CPU Time: .I 0 SECONDS plus or minus 0.055
Wall/CPU: 1.03 ratio. Iteration Count: 10
Test Description: Hennesy Benchmark, Puzzle highly recursive.

Test Name: A000094G Class Name: Composite
CPU Time: 0.18 SECONDS plus or minus 0.009
Wall/CPU: 1.09 ratio. Iteration Count: 40
Test Description: Hennesy Benchmark, quick sort 5000 element random integer array using

quick sort.

Test Name: A000094H Class Name: Composite
CPU Time: 0.25 SECONDS plus or minus 0.012
Wall/CPU: 1.12 ratio. Iteration Count: 20
Test Description: Hennesy Benchmark, Bubble sort 5000 random integer array using bubble

sort.

Test Name: A0000941 Class Name: Composite
CPU Time: 0.38 SECONDS plus or minus 0.0 19
Wall/CPU: 1.09 ratio. Iteration Count: 20
Test Description: Hennesy Benchmark, Tree insert 5000 random elements into a tree that is

sorted.

90

APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: A000094J Class Name: Composite
CPU Time: 0.28 SECONDS plus or minus 0.014
Wall/CPU: 1.09 ratio. Iteration Count: 16
Test Description: Hennesy Benchmark, FFT perform 20 256 point complex FFTs floating point

intensive.

Test Name: A000094K Class Name: Composite
CPU Time: 16.57 SECONDS plus or minus 0.058
Wall/CPU: 1.43 ratio. Iteration Count: 2
Test Description: Hennesy Benchmark, Ack highly recursive 10 executions of Ackerman (3,6)

Test Name: BOOOOO1A Class Name: Application
CPU Time: 829.00 MICROSECONDS plus or minus 23.100
Wall/CPU: 2.87 ratio. Iteration Count: 10000
Test Description: Tracking mathematical application using covarience matrix fixed point, delta

2.0**(-15) all checks on.

Test Name: BOOOOO1B Class Name: Application
CPU Time: 550.99 MICROSECONDS plus or minus 12.195
Wall/CPU: 1.51 ratio. Iteration Count: 10000
Test Description: Tracking mathematical application using covarience matrix fixed point, delta

2.0**(-15) checks suppressed.

Test Name: B000002A Class Name: Application
CPU Time: 441.00 MICROSECONDS plus or minus 11.491
Wall/CPU: 1.43 ratio. Iteration Count: 10000
Test Description: Tracking mathematical application using covarience matrix digits 6 range -

1.Oe+9.. 1.Oe+9 all checks on.

Test Name: B000002B Class Name: Application
CPU Time: 313.00 MICROSECONDS plus or minus 15.650
Wall/CPU: 1.04 ratio. Iteration Count: 20000
Test Description: Tracking mathematical application using covarience matrix digits 6 range -

1.Oe+9.. 1.Oe+9 checks suppressed.

Test Name: B000003A Class Name: Application
CPU Time: 880.00 MICROSECONDS plus or minus 10.098
Wall/CPU: 1.25 ratio. Iteration Count: 10000
Test Description: Tracking mathematical application using covarience matrix digits 9 range -

I.Oe+9.. 1.Oe+9 all checks on.

Test Name: B000003B Class Name: Application
CPU Time: 509.00 MICROSECONDS plus or minus 25.450
Wall/CPU: 1.04 ratio. Iteration Count: 10000
Test Description: Tracking mathematical application using covarience matrix digits 9 range -

I.Oe+9.. 1.0e+9 checks suppressed.

91

APPENDD(I
PIWO (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: B000004A Class Name: Application
CPU Time: 478.00 MICROSECONDS plus or minus 23.900
Wall/CPU: 1.01 ratio. Iteration Count: 10000
Test Description: Tracking mathematical application using covarience matrix digits 6 and

integer all checks on.

Test Name: B000004B Class Name: Application
CPU Time: 322.50 MICROSECONDS plus or minus 16.125
Wall/CPU: 1.03 ratio. Iteration Count: 20000
Test Description: Tracking mathematical application using covarience matrix digits 6 and

integer checks suppressed.

Test Name: BOOOO10 Class Name: Composite
CPU Time: 940.00 MILLISECONDS plus or minus 47.000
Wall/CPU: 1.03 ratio. Iteration Count: 5
Test Description: NASA Orbit determination heavy floating point and trig initializing and

running.

4.75433302E+03 4.65319583E+03 2.26151483E+02
-5.29274842E+00 5.22249948E+00 2.25443633E+00

Test Name: BOOOOI Class Name: Composite
CPU Time: 87.25 MILLISECONDS plus or minus 2.990
Wall/CPU: 2.97 ratio. Iteration C -jnt: 80
Test Description: JIAWG Kalman benchmark. Just put in PIWG measurement harness.

Test Name: BOOOO 13 Class Name: Composite
CPU Time: 7.47 MILLISECONDS plus or minus 0.374
Wall/CPU: 1.01 ratio. Iteration Count: 800
Test Description: TRACKER CENTROID Algorithm. All integer calculations searching a 60 x

60 array.

Test Name: COOOOO I Class Name: Tasking
CPU Time: 1943.74 MICROSECONDS plus or minus 31.937
Wall/CPU: 1.27 ratio. Iteration Count: 3200
Test Description: Task create and terminate measurement with one task, no entries, when task is

in a procedure using a task type in a package, no select statement, no loop.

Test Name: C000002 Class Name: Tasking
CPU Time: 1903.15 MICROSECONDS plus or minus 30.451
Wall/CPU: 1.21 ratio. Iteration Count: 3200
Test Description: Task create and terminate time measurement, with one task, no entries when

task is in a procedure, task defined and used in procedure, no select statement,
no loop.

92

APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: C000003 Class Name: Tasking
CPU Time: 1890.62 MICROSECONDS plus or minus 94.531
Wal/CPU: 1.06 ratio. Iteration Count: 3200
Test Description: Task create and terminate time measurement. Task is in declare block of

main procedure one task, no entries, task is in the loop.

Test Name: D000001 Class Name: Allocation
CPU Time: 2.56 MICROSECONDS plus or minus 0.197
WallCPU: 5.06 ratio. Iteration Count: 409600
Test Description: Dynamic array allocation, use and deallocation time measurement.

Dynamic array elaboration, 1000 integers in a procedure get space and free it
in the procedure on each call.

Test Name: D000002 Class Name: Allocation
CPU Time: 550.00 MICROSECONDS plus or minus 9.169
Wall/CPU: 1.46 ratio. Iteration Count: 12800
Test Description: Dynamic array elaboration and initialization time measurement

allocation, initialization, use and deallocation 1000 integers initialized by
others=> 1.

Test Name: D000003 Class Name: Allocation
CPU Time: 2.78 MICROSECONDS plus or minus 0.197
Wall/CPU: 1.07 ratio. Iteration Count: 409600
Test Description: Dynamic record allocation and deallocation time measurement

elaborating, allocating and deallocating record containing a dynamic array of
1000 integers.

Test Name: D000004 Class Name: Allocation
CPU Time: 548.43 MICROSECONDS plus or minus 27.422
Wall/CPU: 1.19 ratio. Iteration Count: 12800
Test Description: Dynamic record allocation and deallocation time measurement elaborating,

initializing by (DYNAMIC._SIZE,(others=>1)) record containing a dynamic
array of 1000 integers.

$ RUN A00O102

0.0201 = clock resolution used for iteration stability

Test Name: EOOOOOI Class Name: Exception
CPU Time: 88.48 MICROSECONDS plus or minus 4.424
Wall/CPU: 1.03 ratio. Iteration Count: 51200
Test Description: Time to raise and handle an exception. Exception defined locally and handled

locally.

93

APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: E000002 Class Name: Exception
CPU Time: 146.49 MICROSECONDS plus or minus 7.324
Wall/CPU: 1.07 ratio. Iteration Count: 25600
Test Description: Exception raise and handle timing measurement when exception is in a

procedure in a package.

Test Name: E000003 Class Name: Exception
CPU Time: 98.44 MICROSECONDS plus or minus 4.922
Wall/CPU: 1.05 ratio. Iteration Count: 51200
Test Description: Exception raise and handle timing measurement when exception is raised

nested 3 deep in procedure calls.

Test Name: E000004 Class Name: Exception
CPU Time: 98.63 MICROSECONDS plus or minus 4.932
Wall/CPU: 1.06 ratio. Iteration Count: 51200
Test Description: Exception raise and handle timing measurement when exception is nested 4

deep in procedures.

Test Name: E000005 Class Name: Exception
CPU Time: 995.30 MICROSECONDS plus or minus 49.765
Wall/CPU: 1.09 ratio. Iteration Count: 6400
Test Description: Exception raise and handle timing measurement when exception is in a

rendezvous. Both the task and the caller must handle the exception.

Test Name: FOOOOO I Class Name: Style
CPU Time: 0.54 MICROSECONDS plus or minus 0.098
Wall/CPU: 1.06 ratio. Iteration Count: 819200
Test Description: Time to set a boolean flag using a logical equation a local and a global integer

are compared compare this test with F000002.

Test Name: F000002 Class Name: Style
CPU Time: 0.46 MICROSECONDS plus or minus 0.098
Wall/CPU: 1.08 ratio. Iteration Count: 819200
Test Description: Time to set a boolean flag using an 'if' test a local and a global integer are

compared. Compare this test with F000001.

Test Name: G000001 Class Name: Input/Output
CPU Time: 110.11 MICROSECONDS plus or minus 2.685
WalVCPU: 1.37 ratio. Iteration Count: 40960
Test Description: TEXTIO.GETLINE reading 20 characters, time measured. A scratch file is

written, then read and reset.

94

APPENDIX I
PIWO (FIRST) EXECUTIrON TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: G000002 Class Name: Input/Output
CPU Time: 769.54 MICROSECONDS plus or minus 38.477
WalVCPU: 1.07 ratio. Iteration Count: 5120
Test Description: TEXTJO.GET called 20 times per line, time measured a scratch file is

written, then read and reset. Compare to O000001 for about same number of
characters.

Test Name: 0000003 Class Name: Input/Output
CPU Time: 832.04 MICROSECONDS plus or minus 166.720
Wal CPU: 21.19 ratio. Iteration Count: 10240
Test Description: TEXTJO.PUTLINE for 20 characters, timing measurment a scratch file is

opened, written and reset.

Test Name: G000004 Class Name: Input/Output
CPU Time: 1367.20 MICROSECONDS plus or minus 167.903
Wall/CPU: 10.67 ratio. Iteration Count: 5120
Test Description: TEXTJO.PUT 20 times with one character, time measurement a scratch file

is written, reset and rewritten. Compare, approximately, to G000003.

Test Name: G000005 Class Name: Input/Output
CPU Time: 60.79 MICROSECONDS plus or minus 3.039
Wall/CPU: 1.02 ratio. Iteration Count: 40960
Test Description: TEXTIO.GET an integer from a local string, timing measurement use

TEXT_IO.PUT to convert 1.. 100 to a string, then use TEXTIO.GET to get
the number back.

Test Name: G000006 Class Name: Input/Output
CPU Time: 177.25 MICROSECONDS plus or minus 5.513
Wall/CPU: 1.40 ratio. Iteration Count: 20480
Test Description: TEXTJO.GET getting a floating point fraction from a local string, timing

measurement on 0.001 to 0.01 range of numbers compare, approximately, to
G000005 for integer vs float.

Test Name: G000007 Class Name: Input/Output
CPU Time: 20999.91 MICROSECONDS plus or minus 1051.536
Wall/CPU: 4.18 ratio. Iteration Count: 320
Test Description: Open and close an existing file, time measurement. A scratch file is created

and closed. The scratch file is opened INFILE and closed in a loop

Test Name: H00000 I Class Name: Chapter 13
CPU Time: 1.77 MICROSECONDS plus or minus 0.098
WaI/CPU: 1.24 ratio. Iteration Count: 819200
Test Description: Time to perform standard boolean operations on arrays of booleans. For this

test the arrays are PACKED with the pragma 'PACK.' For this test the
operations are performed on the entire arrays.

95

APPENDIX I
PIWO (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: H000002 Class Name: Chapter 13
CPU Time: 42.68 MICROSECONDS plus or minus 2.134
Wall/CPU: 1.13 ratio. Iteration Count: 102400
Test Description: Time to perform standard boolean operations on arrays of booleans. For this

test the arrays are NOT PACKED with the pragna 'PACK.' For this test the
operations are performed on the entire array.

Test Name: H000003 Class Name: Chapter 13
CPU Time: 132.23 MICROSECONDS plus or minus 6.611
WalI/CPU: 1.07 ratio. Iteration Count: 51200
Test Description: Time to perform standard boolean operations on arrays of booleans. For this

test the arrays are PACKED with the pragma 'PACK.' For this test the
operations are performed on components in a loop.

Test Name: H000004 Class Name: Chapter 13
CPU Time: 44.53 MICROSECONDS plus or minus 2.227
Wall/CPU: 1.02 ratio. Iteration Count: 102400
Test Description: Time to perform standard boolean operations on arrays of booleans. For this

test the arrays are NOT PACKED with the pragnma 'PACK.' For this test the
operations are performed on components in a loop.

Test Name: H000005 Class Name: Chapter 13
CPU Time: 0.13 MICROSECONDS plus or minus 0.098
Wall/CPU: 1.03 ratio. Iteration Count: 819200
Test Description: The time for UNCHECKEDCONVERSION to move one INTEGER

object to another INTEGER object. This may be zero with good
optimization.

Test Name: H000006 Class Name: Chapter 13
CPU Time: 7.45 MICROSECONDS plus or minus 0.372
Wall/CPU: 1.03 ratio. Iteration Count: 409600
Test Description: The time for UNCHECKEDCONVERSION to move 10 floating array

objects to a 10 component floating record.

Test Name: H000007 Class Name: Chapter 13
CPU Time: 10.74 MICROSECONDS plus or minus 0.537
Wall/CPU: 1.02 ratio. Iteration Count: 409600
Test Description: The time to store and extract bit fields that are defined by representation

clauses using Boolean and Integer record components. 12 accesses, 5 stores, I
record copy.

96

APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: H000008 Class Name: Chapter 13
CPU Time: 4.05 MICROSECONDS plus or minus 0.203
WallCPU: 1.03 ratio. Iteration Count: 409600
Test Description: The time to store and extract bit fields that are defined by nested

representation clauses using packed arrays of Boolean and Integer record
components.

Test Name: H000009 Class Name: Chapter 13
CPU Time: 12.79 MICROSECONDS plus or minus 0.640
Wall/CPU: 1.04 ratio. Iteration Count: 409600
Test Description: The time to perform a change of representation. If the result is near zero,

feature probably not implemented.

Test Name: LOOOOO I Class Name: Iteration
CPU Time: 0.27 MICROSECONDS plus or minus 0.063
Wall/CPU: 1.04 ratio. Iteration Count: 1280000
Test Description: Simple "for" loop time for I in 1 .. 100 loop time reported is for once through

loop.

Test Name: L000002 Class Name: Iteration
CPU Time: 0.27 MICROSECONDS plus or minus 0.063
Wall/CPU: 1.04 ratio. Iteration Count: 1280000
Test Description: Simple "while" loop time while I <- 100 loop time reported is for once

through loop.

Test Name: L000003 Class Name: Iteration
CPU Time: 0.26 MICROSECONDS plus or minus 0.063
Wall/CPU: 1.04 ratio. Iteration Count: 1280000
Test Description: Simple "exit" loop time loop I:=I+l; exit when 1>100; end loop; time reported

is for once through loop.

Test Name: L000004 Class Name: Iteration
CPU Time: 0.30 MICROSECONDS plus or minus 0.079
Wall/CPU: 1.04 ratio Iteration Count: 1024000
Test Description: Measures Compiler's choice to UNWRAP a small loop of 5 iterations when

given a PRAGMA OPTIMIZE(TIME). An execution time less than .05
microseconds indicates the unwrap occurred.

Test Name: L000005 Class Name: Iteration
CPU Time: 0.21 MICROSECONDS plus or minus 0.079
Wall/CPU: 1.03 ratio. Iteration Count: 1024000
Test Description: Measures Compiler's choice to UNWRAP a small loop of 5 iterations when

given a PRAGMA OPTIMIZE(Space). An execution speed < .05
microseconds indicates the unwrap occurred.

97

APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: P000001 Class Name: Procedure
CPU Time: 0.06 MICROSECONDS plus or minus 0.079
Wall/CPU: 1.05 ratio. Iteration Count: 1024000
Test Description: Procedure call and return time (may be zero if automatic inlining) procedure

is local, no parameters.

Test Name: P000002 Class Name: Procedure
CPU Time: 7.15 MICROSECONDS plus or minus 0.357
Wall/CPU: 1.05 ratio. Iteration Count: 512000
Test Description: Procedure call and return time. Procedure is local, no parameters when

procedure is not inlinable.

Test Name: P000003 Class Name: Procedure
CPU Time: 7.32 MICROSECONDS plus or minus 0.366
Wall/CPU: 1.02 ratio. Iteration Count: 512000
Test Description: Procedure call and return time measurement. The procedure is in a separately

compiled package. Compare to P000002.

Test Name: P000004 Class Name: Procedure
CPU Time: 0.48 MICROSECONDS plus or minus 0.079
Wall/CPU: 1.04 ratio. Iteration Count: 1024000
Test Description: Procedure call and return time measurement. The procedure is in a separately

compiled package pragma INLINE used. Compare to P000001.

Test Name: P000005 Class Name: Procedure
CPU Time: 7.95 MICROSECONDS plus or minus 0.397
Wall/CPU: 1.04 ratio. Iteration Count: 512000
Test Description: Procedure call and return time measurement. The procedure is in a separately

compiled package. One parameter, in INTEGER

Test Name: P000006 Class Name: Procedure
CPU Time: 8.16 MICROSECONDS plus or minus 0.408
Wall/CPU: 1.03 ratio. Iteration Count: 512000
Test Description: Procedure call and return time measurement. The procedure is in a separately

compiled package. One parameter, out INTEGER.

Test Name: P000007 Class Name: Procedure
CPU Time: 8.44 MICROSECONDS plus or minus 0.422
Wall/CPU: 1.04 ratio. Iteration Count: 512000
Test Description: Procedure call and return time measurement. The procedure is in a separately

compiled package. One parameter, in out INTEGER

93

APPENDIX I
PIWO (FIRST) EXECU71ON TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: P000010 Class Name: Procedure
CPU Time: 15.43 MICROSECONDS plus or minus 0.771
Wall/CPU: 1.06 ratio. Iteration Count: 256000
Test Description: Procedure call and return time measurement. Compare to P000005 10

parameters, in INTEGER

Test Name: P000011 Class Name: Procedure
CPU Time: 22.89 MICROSECONDS plus or minus 1.144
Wall/CPU: 1.04 ratio. Iteration Count: 256000
Test Description: Procedure call and return time measurement. Compare to P000005, P000010

20 parameters, in INTEGER.

Test Name: P000012 Class Name: Procedure
CPU Time: 10.59 MICROSECONDS plus or minus 0.529
Wal/CPU: 1.02 ratio. Iteration Count: 256000
Test Description: Procedure call and return time measurement. Compare with P000010

(discrete vs composite parameters) 10 paramaters, in MY_RECORD a 3
component record.

Test Name: P000013 Class Name: Procedure
CPU Time: 14.22 MICROSECONDS plus or minus 0.711
WaIVCPU: 1.04 ratio. Iteration Count: 256000
Test Description: Procedure call and return time measurement 20 composite 'in' parameters.

The composite type is a 3 component record.

Test Name: T000001 Class Name: Tasking
CPU Time: 176.95 MICROSECONDS plus or minus 8.848
Wall/CPU: 1.05 ratio. Iteration Count: 25600
Test Description: Minimum rendezvous, entry call and return time 1 task I entry, task inside

procedure no select.

Test Name: T000002 Class Name: Tasking
CPU Time: 175.00 MICROSECONDS plus or minus 8.750
Wall/CPU: 1.06 ratio. Iteration Count: 25600
Test Description: Task entry call and return time measured. One task active, I entry in task,

task in a package, no select statement.

Test Name: T000003 Class Name: Tasking
CPU Time: 174.22 MICROSECONDS plus or minus 8.711
WalI/CPU: 1.03 ratio. Iteration Count: 25600
Test Description: Task entry call and return time measured. Two tasks active, I entry per

task, tasks in a package, no select statement.

99

APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Test Name: T000004 Class Name: Tasking
CPU Time: 217.19 MICROSECONDS plus or minus 10.859
Wall/CPU: 1.04 ratio. Iteration Count: 25600
Test Description: Task entry call and return time measured. One tasks active, 2 entries, tasks

in a package, using selef st-atement.

Test Name: T000005 Class Name: Tasking
CPU Time: 226.25 MICROSECONDS plus or minus 11.312
Wall/CPU: 1.01 ratio. Iteration Count: 32000
Test Description: Task entry call and return time measured. Ten tasks active, I entry per task,

tasks in a package, no select statement.

Test Name: T000006 Class Name: Tasking
CPU Time: 304.38 MICROSECONDS plus or minus 15.219
Wall/CPU: 1.01 ratio. Iteration Count: 16000
Test Description: Task entry call and return time measurement. One task with 10 entries, task

in a package, I select statement, compare to T000005.

Test Name: T000008 Class Name: Tasking
CPU Time: 388.28 MICROSECONDS plus or minus 19.414
Wall/CPU: 1.01 ratio. Iteration Count: 12800
Test Description: Measure the average time to pass an integer from a producer task through a

buffer task to a consumer task.

Test Name: YOOOOOI Measure actual delay vs commanded delay

Commanded Actual CPU Iterations

0.0010 0.0100 0.0000 1024
0.0020 0.0099 0.0000 512
0.0039 0.0099 0.0000 256
0.0078 0.0099 0.0000 128
0.0156 0.0200 0.0000 64
0.0313 0.0400 0.0000 32
0.0625 0.0699 0.0000 16
0.1250 0.1299 0.0000 8
0.2500 0.2500 0.0000 4
0.5000 0.5000 0.0000 2
1.0000 1.0000 0.0000 2
2.0000 2.0000 0.0000 2

$ RUN A000055
%ADA-F-NAME,_ERROR, NAMEERROR
-RMS-E-FNF, file not found
-ADA-1-OPERINFO, While performing TEXTJO.OPEN
-ADA-I-MODEINFO, The Mode of the file is INJILE

100

APPENDIX I
PIWG (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

-ADA-l-TEXTINFO, Column 1, Line 1, Page 1, Line length is 0, Page length is 0
-ADA-I-FILENAME, The external file specification is:
-ADA-I-MOREINFO, $!$DIA9:[DAVIDSON.PIWG]AO00052D.;
%TRACE-E-TRACEBACK, symbolic stack dump follows
module name routine name line rel P
abs PC

000553AD
000553AD

above condition handler called with exception 003 1A264:
%ADA-F-NAMEERROR, NAME-ERROR
-RMS-E-FNF, file not found
-ADA-I-OPERINFO, While performing TEXTJO.OPEN
-ADA-l-MODEINFO, The Mode of the file is INJFILE
-ADA-I-TEXTINFO, Column 1, Line 1, Page 1, Line length is 0, Page length is 0
-ADA-I-FILENAME, The external file specification is:
-ADA-I-MOREINFO, $ l$DIA9:[DAVIDSON.P1WG]AO00052D.;
Send of exception message

0004A152 0004A152

0004FB57 0004FB57

0004E IID 0004ElID
A000055 A000055 69 00000131
00003774
ADASELAB_A00005 ADASELABA000055 00000009
00002409

000043C9
000043C9

00055 17D
0005517D
ADA$ELABA00005 ADA$ELAB._A000055 0000001B
0000241B

000043A4
000043A4
$ DEL SCRATCH*.*;* !remove scratch files from "G" tests
$ DEL A000052D.;* !remove intermediate timing files
%DELETE-W-SEARCHFAIL, error searching for $ISDIA9:[DAVIDSON.PIWG]A000052D.;*
-RMS-E-FNF, file not found
$ DEL PIWGRES.;* !remove saved results if any
%DELETE-W-SEARCHFAIL, error searching for $S1$DIA9:[DAVIDSON.PIWG]PIWGRES.;*
-RMS-E-FNF, file not found
$!DEL [.ADALIB]*.*;* tremove compilation library

DAVIDSON job terminated at I 1-JUN-1993 18:44:37.78

101

APPENDIX I
PIWO (FIRST) EXECUTION TEST RESULTS USING DEC ADA ON THE VAX COMPUTER

Accounting information:
Buffered 1/0 count: 15713 Peak working set size: 3862
Direct 1/O count: 24392 Peak page file size: 11000
Page faults: 393869 Mounted volumes: 0
Charged CPU time: 0 00:47:03.21 Elapsed time: 0 01:25:08.64

102

APPENDIX J

COMMAND FILE FOR

"SECOND RUN" PIWG TESTS

ON THE VAX COMPUTER

103

APPENDIX J
COMMAND FILE FOR "SECOND RUN" PIWG TESTS ON THE VAX COMPUTER

$S FOR PIWG ON THE VAX VMS
$I THIS IS FOR "SECOND RUN" AS DEFINED IN THE
S! "READ.ME" FILE FOR PIWO
Si
St VAX VMS files to compile (using standard output PIWGJO)
$ SET VERIFY
$ SET NOON
S SET DEF IDIA9:[DAVIDSON.PIWG]
$ DEL [.ADALIB]*.*;* I Clean out any old libraries
$ ACS CREATE LIB [.ADALIB]
$ ACS SET LIB [.ADALIB]
$ @ VAXCONFIG
S!
S ADA AOOOOO1 ! DURATIONJO instantiation
$ ADA A000012 I CPUTIME_CLOCK.VAX
S ADA A000051 ! wall timing routines for host only
$ ACS LINK A000051

$ RUN A000051
$ RUN A000051 ! calibrate time to measure time
$ RUN A000051
$ ADA ZOOOOO
$ ADA Z000002
$ ADA Z000003
$ ADA Z000004
$ ADA Z000005
$ ADA Z000006
$ ADA Z000007
$ ADA Z000008
$ ADA Z000009
$ ADA ZOOOO10
$ ADA ZOOOO1i
$ ADA ZOOOO12
S ADA Z000013
$ ADA Z000) 14
S ADA ZOOOO15
$ ADA ZOOOO16
S ADA ZOOOOI6A
$ ADA ZOOOO17
$ ADA ZOOOOI7A
$ ADA ZOOOO i8
$ ACS LINK Z000018
$ RUN Z000018
$!

$ ADA Z000020
$ ADA Z000021

104

APPENDIX J
COMMAND FILE FOR '"SECOND RUN" PIWO TESTS ON THE VAX COMPUTER

S ADA Z000022
S ADA Z000023
S ACS LINK Z000023 $ RUN Z000023
S RUN AO00051 ! final time measurement
$I when this test can be run with no other tasks running, it represents a
S! composite software development benchmark.sI

S DEL SCRATCH*.*;* I remove scratch files from "G" tests
S DEL A0000S2D.;* I remove intermediate timing files
S DEL PIWGRES.;* ! remove saved results if any
S! DEL [.ADALIBJ*.*;* ! remove compilation library

105

APPENDIX K

PIWG "SECOND RUN" RESULTS

USING

DEC ADA ON THE VAX COMPUTER

106

APPENDIX K
PlWG"SECOND RUN" RESULTS USING DEC ADA ON THE VAX COMNPUTER

S$SYLOGIN.COM
$I For the AAAF CLuster
$ set NOVERIFY
$ SET NOON
S SET DEF $ISDIA9:[DAVIDSON.PIWG]
S DEL [.ADALIB]*.*;* I Clean out any old libraries
$ ACS CREATE 11 [.ADALIB]
%ACS-I-CL-LIBCRE, Library $ I$DIA9:[DAVIDSON.PIWG.ADALIB] created
$ ACS SET LIB [.ADALIB]
%ACS-I-CL-LIBIS, Current program library is
$I SDIA9:[DAVIDSON.PIWG.ADALIB]
S @ VAXCONFIG

System configuration:
Cluster: AAAF
Node: JEDI
CPU: VAX 4000-200

Character emulated: TRUE
F_FLOAT emulated: FALSE
DFLOAT emulated: FALSE
GFLOAT emulated: FALSE
HFLOAT emulated: TRUE

VMS version: V5.5
Virtual page count: 230000
Working set maximum: 16400
Main Memory (32.00Mb)
System device: RF72
User device: RF71

VAX Ada software configuration:
ADA version: "VAX Ada V2.2-38"
ACS version: "VAX Ada V2.2-38"
ADARTL version: "V5.4-03"
ADAMSG version: "1-029"

Process configuration:
Open file limit: 50
Enqueue quota: 100
Timer queue quota: 20
Page file quota: 17000
Working set memory parameters:

WSQUOTA: 2500
WSEXTENT: 4000
Adjustment: enabledS EXIT !10

5!
$ ADA A000001 ! DURATIONJO instantiation
$ ADA A000012 ! CPUTIMECLOCK.VAX
$ ADA A00005 i ! wall timing routines for host only
$ ACS LINK A000051
%ACS-I-CL_LINKJNG, Invoking the VMS Linker for VAXVMS target
$SET DEFAULT IDIA9:[DAV1DSON.PIWG]
SLINK :-"
SLINK-
/NOMAP-/EXE=[]A0000I-SYS$1NPUT:/OPTIONS

107

APPENDIX K

PIWO "SECOND RUN" RESULTS USING DEC ADA ON THE VAX COMPUTER

SI SDIAg:DAVIDSON.PIWG]AOOOOS I.OBJ; 1SSTATUS:- $STATUS

WDELETE SI SDIA9.[DAVIDSON.PIWGJA00005 I.OBJ: I
SDELETE $5I$DIA9[DAVIDSON.PIWG]AO0005 .COM; 1
SEXIT
St
$ RUN A000051

CPU time now- 22.8199 WALL time now- 41478.8800 seconds.
$ RUN A00005 !! calibrate time to measure time

CPU time now- 22.9500 WALL time now- 41479.1300 seconds.
S RUN A00005 I

CPU time now- 23.0800 WALL time now- 41479.4200 seconds.
S ADA ZOOOOOI
$ ADA Z000002
S ADA Z000003
$ ADA Z000004
$ ADA Z000005
S ADA Z000006
S ADA Z000007
S ADA Z000008
$ ADA Z000009
S ADA ZOOOO10$SADA ZOOOO11S ADA Z000012
$ ADA Z000013
$ ADA ZOOOO4
$ ADA Z000014
S ADA Z000016
S ADA ZOOOO16A
$ ADA ZOOOOI7
$ ADA Z000017A
S ADA ZOOOOI8
S ACS LINK ZOOOOIS
%ACS-1-CLLINKING, Invoking the VMS Linker for VAXVMS target
SSET DEFAULT S ISDIA9:[DAVIDSON.PIWG]
SLINK:- D
SLINK-
/NOMAP-
/EXE=[ZO 0001-

SYSSINPUT:/OPTIONS
S S$DIA9:[DAVIDSON.PI WG]Z00018.OBJ; I

$ISTATUS-- S STATUS
$SDELETE SISDIA9[DAVIDSON.PIWTJZUSOOI8.OBJ;l
SDELETE $1 $DIA9:[DAVIDSON.PIWG]ZOOOO S.COM; 1
$EXIT
S RUN Z000018

Test printout and value of acceleration, 9.80665E+00 meter per second squared - G
i. n 032aE+01 meter

1 .S1032E+00 second

2.08030E+01 meter per second

S ADA Z000020
S ADA Z000021
$ ADA Z000022

109

APPENDIX K
PIWG "SECOND RUN" RESULTS USING DEC ADA ON THE VAX COMPUTER

S ADA Z000023
S ACS LINK Z000023
%ACS-I-CLLINKING, Invoking the VMS Linker for VAX-VMS target
SSET DEFAULT $ 1SDIA9:[DAVIDSON.PIWG]
SUNK :- ""
SLINK-
/NOMAP-

SYS$INPUT:/OPTIONS
SISDIA9-.[DAVIDSON.PIWG]ZOOO23.OBJ;l

SSTATUS $STATUS
SDELETE SISDIA9: [DAVIDSON.PIWGJZ000023.OBJ; I
SDELETE SI $DIA9:[DAVIDSON.PIWG]ZO00023.COM; 1
SEXIT
S RUN Z000023

UP SORTED DATA
S1.000005E+00 AAA FIRST 1.09

2 2.00000E+00 BBB SECOND 2.09
3 3.OOOOOE+00 CCC THIRD 3.09
4 4.00000E+00 DDD FOURTH 4.09

DOWN SORTED DATA
4 4.00000E+00 DDD FOURTH 4.09
3 3.OOOOOE+00 CCC THIRD 3.09
2 2.OOOOOE+00 BBB SECOND 2.09
I 1.00000E+00 AAA FIRST 1.09

in the bag
gone fishing
end FISH
ALLSTATEMENTSPROCEDURE_2
into LOOPNAMEI
Z000021 finished
S RUN A000051 ! final time measurement
CPU time now- 695.4900 WALL time now- 42445.5900 seconds.
$S when this test can be run with no other tasks running, it represents a composite
$S development benchmark.
St

S DEL SCRATCH*.*;* ! remove scratch files from "G" tests
%DELETE-W-SEARCHFAIL, error searching for
SISDIA9:[DAVIDSON.PIWG]SCRATCH*.*;*
-RMS-E-FNF, file not found
S DEL A000052D.;" I remove intermediate timing files
%DELETE-W-SEARCHFAIL, error searching for IDIA9:[DAVIDSON.PIWG]A000052D.;*
-RMS-E-FNF, file not found
S DEL PIWGRES.;* I remove saved results if any
%DELETE-W-SEARCHFAIL, error searching for IDIA9:[DAVIDSON.PIWG]PIWGRES.;*
-RMS-E-FNF, file not found
SI DEL [.ADALIB]*.*;* I remove compilation library

DAVIDSON job terminated at 16-JUN-1993 11:47:26.54

109

APPENDIX K
PIWO "SECOND RUN" RESULTS USINO DEC ADA ON THE VAX COMPUTER

Accounting information:
Buffered 1/0 count: 2495 Peak working set size: 4000
Direct 1/0 count: 4085 Peak page file size: 11527
Page faults: 120251 Mounted volumes: 0
Charged CPU time: 0 00:11:35.94 Elapsed time: 0 00:17:39.19

110

APPENDIX L

COMMAND FILE FOR

"THIRD RUN" PIWG TESTS

ON THE VAX COMPUTER

111

APPENDIX L
COMMAND FILE FOR wRTHIRD RUN" PIWG TESTS ON THE VAX COMPUTER

$! FOR PIWG ON THE VAX VMS
$! THIS IS FOR "THIRD RUN" AS DEFINED IN THE
$1 "READ.ME" FILE FOR PIWG$!
$I VAX VMS files to compile (using standard output PIWG_IO)
S SET VERIFY
S SET NOON
S SET DEF IDIA9:[DAVIDSON.PIWG]
S DEL [.ADALIBJ*.*;* ! Clean out any old libraries
S ACS CREATE LIB [.ADALIB]
S ACS SET LID [.ADALIBJ
$ @ VAXCONFIG

$ ADA A000001 I DURATIONJO instantiation
$ ADA A000012 ! CPUTIMECLOCK.VAX
S ADA A000051 ! wall timing routines for host only
$ ACS LINK A000051
$I
$ RUN A00005 I
S RUN A000051 ! calibrate time to measure time
$ RUN A000051
$ ADA Z000100
$ ADA Z000101
$ ADA ZOOO102
S ADA Z000103
$ ADA Z000104
$ ADA ZOOO105
$ ADA Z000106
$ ADA Z000107
$ ADA Z000108
$ ADA ZOOO109
$ ADA Z000110
$ ADA Z000111
$ ADA Z000112
$ ADA ZOOO113
$ ADA Z000114
$ ADA Z0001 15
$ ADA Z000116
$ ADA Z000117
S ADA Z000118
S ADA Z000119
$ ADA Z000120
$ ADA Z000121
$ ADA Z000122
$ ADA Z000123
S ADA Z000124
$ ADA Z000125
$ ADA Z000126
$ ADA Z000127
S ADA Z000128
S ADA ZOOO129
$ ADA Z000130
S ADA ZOOO13I
S ADA Z000132

112

APPENDIX L
COMMAND FILE FOR 'TIIRD RUN" PIWG TESTS ON THE VAX COMPUTER

$ ADA Z000133
S ADA Z000134
S ADA Z000135
$ ADA Z000136
$ ADA Z000137
$ ADA Z000138
$ ADA Z000139
$ ADA ZOOO140
$ ADA ZOOO141
$ ADA Z000142
$ ADA ZOOO143
$ ADA Z000144
$ ADA Z000145
S ADA ZOOO146
$ ADA Z000147
$ ADA Z000148
$ ADA Z000149
S ADA ZOOO150
$ ADA ZOOO151I
$ ADA Z000152
$ ADA Z000153
S ADA ZOOO154
$ ADA ZOOO155
$ ADA ZOOO156
$ ADA Z000157
$ ADA Z000158
$ ADA Z000159
S ADA Z000160
$ ADA Z000161
$ ADA Z000162
$ ADA Z000163
$ ADA ZOOO164
$ ADA Z000165
$ ADA Z000166
$ ADA ZOOO 167
$ ADA Z000168
$ ADA Z000169
$ ADA Z000170
$ ADA Z000171
$ ADA Z000172
$ ADA ZOOO173
$ ADA Z000174
$ ADA Z000175
S ADA ZOOO176
$ ADA ZOOO177
$ ADA Z000178
S ADA Z000179
$ ADA Z000180
$ ADA Z000181
$ ADA Z000 182
S ADA Z000183
$ ADA ZOOO184
$ ADA ZOOO 185
$ ADA ZOOO186

113

APPENDIX L
CO AND FILE FOR "THIRD RUN" PIWO TESTS ON THE VAX CkOMTER

S ADA Z000187
S ADA Z000188
S ADA Z000189
S ADA Z000190
$ ADA ZOOO191
$ ADA Z000192
$ ADA Z000193
S ADA Z000194
$ ADA ZOOO195
S ADA ZOOOI96
$ ADA ZOOO197
$ ADA Z000198
$ ADA Z000199
$ RUN A00005 1 I final wall time
$SSt
$ RUN A000051 I initial wall time
S ADA Z000200
$ RUN A000051 I final time measurement
$S when this test can be run with no other tasks running, it represents a
$! composite software development benchmark. Compute difference and
St report.

$ DEL SCRATCH*.*;* I remove scratch files from "G" tests
S DEL A00002D.;* I remove intermediate timing files
$ DEL PIWGRES.;* I remove saved results if any
$S DEL [.ADALIB]*.*;" I remove compilation library

114

APPENDIX M

PIWG "THIRD RUN" RESULTS

USING

DEC ADA ON THE VAX COMPUTER

115

APPENDIX M

PIWG "THIRD RUN" RESULTS USING DEC ADA ON THE VAX COMPUTER

$!SYLOGIN.COM
$5 For the AAAF CLuster
$ set NOVERIFY
$ SET NOON
$ SET DEF IDIA9:[DAVIDSON.PIWG]
$ DEL [.ADALIB]*.*;* ! Clean out any old libraries
$ ACS CREATE LIB [.ADALIB]
%ACS-I-CLLIBCRE, Library 1DIA9:[DAVIDSON.PIWG.ADALIB] created
$ ACS SET LIB [.ADALIB]
%ACS-l-CL..LIBIS, Current program library is
$I $DIA9:[DAVIDSON.PIWG.ADALIB]
$ @ VAXCONFIG

System confijuration:
Cluster. AAAF
Node: JEDI
CPU: VAX 4000-200

Character emulated: TRUE
FFLOAT emulated: FALSE
DJFLOAT emulated: FALSE
GJFLOAT emulated: FALSE
H_FLOAT emulated: TRUE

VMS version: V5.5
Virtual page count: 230000
Working set maximum: 16400
Main Memory (32.00Mb)
System device: RF72
User device: RF71

VAX Ada software configuration:
ADA version: "VAX Ada V2.2-38"
ACS version: "VAX Ada V2.2-38"
ADARTL version: "V5.4-03"
ADAMSG version: "1-029"

Process configuration:
Open file limit: 50
Enqueue quota: 100
Timer queue quota: 20
Page file quota: 17000
Working set memory parameters:

WSQUOTA: 2500
WSEXTENT: 4000
Adjustment: enabled

SEXIT 0$!
$ ADA AOOOOO ! DURATION-1O instantiation
$ ADA A000012 ! CPUJTIMECLOCK.VAX
$ ADA A00005 I! wall timing routines for host only
S ACS LINK A000051
%ACS-1-CLJLINKING, Invoking the VMS Linker for VAX..VMS target
$SET DEFAULT $ ISDIA9:[DAVIDSON.PIWG]
SLINK :""
SLINK-
/NOMAP-
/EXE-[]A00005 I-

SYSSINPUT:/OPTIONS

116

APPENDIX M
PIWG "THIRD RUN" RESULTS USING DEC ADA ON THE VAX COMPUTER

$I $DIA9:[DAVIDSON.PIWG]A00005 I.OBJ; I
$STATUS - $STATUS
$DELETE IDIA9: DAVIDSON.PIWG]AO0005 I.OBJ;I
$DELETE $1SDIA9:[DAVIDSON.PIWGA000051 .COM; I
$EXIT
$1
$ RUN A000051

CPU time now- 33.5699 WALL time now- 48105.2600 seconds.
$ RUN A000051 I calibrate time to measure time

CPU time now- 33.6700 WALL time now= 48105.4900 seconds.
$ RUN A00005 I

CPU time now= 33.7800 WALL time now= 48105.7700 seconds.
$ ADA ZOOO100
$ ADA Z000101
$ ADA Z000102
S ADA ZOOO103
$ ADA ZOOO104
$ ADA ZOOO105
$ ADA Z000106
$ ADA Z000107
$ ADA Z000 108
$ ADA ZOOO109
$ ADA Z0001 10
$ ADA Z0001 I I
$ ADA Z000112
$ ADA ZOOO113
$ ADA ZOOO114
S ADA ZOOO115
$ ADA Z000116
$ ADA Z000117
$ ADA Z0001 18
$ ADA ZOOO 19
$ ADA Z000120
$ ADA Z000121
$ ADA Z000122
$ ADA ZOOO i23
$ ADA Z000124
$ ADA Z000125
$ ADA Z000126
$ ADA Z000127
$ ADA Z000128

qqqqqqqr$ ADA Z000 129
ADA Z000130

$ ADA ZOOO131
$ ADA Z000132
$ ADA Z000133
$ ADA Z000 134
$ ADA ZOOO135
$ ADA Z000136
$ ADA Z000137
$ ADA Z000138
$ ADA Z000139
$ ADA Z000140
$ ADA Z000141

117

APPENDIX M
PIWG "THIRD RUN" RESULTS USING DEC ADA ON THE VAX COMPUTER

$ ADA Z000142
$ ADA Z000143
$ ADA Z000144
$ ADA Z000145
$ ADA Z000146
$ ADA Z000147
$ ADA Z000148
$ ADA ZOOO 49
$ ADA ZOOO150
$ ADA Z000151
$ ADA ZOOO{152
$ ADA Z000153
$ ADA ZOOO154
$ ADA ZOOO155
$ ADA Z000156
$ ADA Z000157
$ ADA Z000158
$ ADA Z000159
$ ADA Z000160
$ ADA Z000161
$ ADA Z000162
$ ADA Z000163
$ ADA Z000164
$ ADA ZOOO 65
$ ADA Z000166
$ ADA ZOOO167
$ ADA Z000168
$ ADA ZOOO169
$ ADA Z000170
$ ADA Z000171
$ ADA ZOOO172
$ ADA Z000173
$ ADA Z000174
$ ADA ZOOO175
$ ADA Z000176
$ ADA Z000177
$ ADA Z000178
$ ADA Z000179
$ ADA Z000180
$ ADA ZOO0181
$ ADA Z000182
$ ADA Z000 183
$ ADA Z.000184
$ ADA Z000185
$ ADA Z000186
$ ADA Z000187
$ ADA ZOOO 188
$ ADA ZOO189
$ ADA ZOOO190
$ ADA Z000191
$ ADA ZOOO 92
$ ADA Z000193
$ ADA ZOOO194
$ ADA Z000195

118

APPENDIX M
PIWO "THIRD RUN" RESULTS USING DEC ADA ON THE VAX COMPUTER

S ADA ZOOO196
$ ADA Z000197
$ ADA Z000198
$ ADA ZOOO199
S RUN A000051 ! final wall time

CPU time now- 307.7400 WALL time now- 48836.6800 seconds.
$I
St
$ RUN A000051 I initial wall time

CPU time now- 307.8500 WALL time now- 48836.9500 seconds.
$ ADA Z000200
S RUN A000051 ! final time measurement

CPU time now- 536.2300 WALL time now- 49496.1500 seconds.
$! when this test can be run with no other tasks running, it represents a composite
$! software development benchmark. Compute difference and report.
S!
$ DEL SCRATCH*.*;* ! remove scratch files from "G" tests
%DELETE-W-SEARCHFAIL, error searching for
SDIA9:[DAVIDSON.PIWG]SCRATCH*.*;*
-RMS-E-FNF, file not found
S DEL A000052D.;* I remove intermediate timing files
%DELETE-W-SEARCHFAIL, error searching for $I SDIA9:[DAVIDSON.PIWG]AO00052D.;*
-RMS-E-FNF, file not found
$ DEL PIWGRES.;* I remove saved results if any
%DELETE-W-SEARCHFAIL, error searching for $ I$DIA9:[DAVIDSON.PIWG]PIWGRES.;*
-RMS-E-FNF, file not found
$! DEL [.ADALIB]*.*;* I remove compilation library

DAVIDSON job terminated at 16-JUN-1993 13:44:57.17

Accounting information:
Buffered 1/O count: 11510 Peak working set size: 3999
Direct 1/O count: 20524 Peak page file size: 11052
Page faults: 368280 Mounted volumes: 0
Charged CPU time: 0 00:08:56.70 Elapsed time: 0 00:28:22.82

119

